Jump to content

Matrix stiffness method

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Kallog (talk | contribs) at 05:30, 11 November 2008 (merged into "direct stiffness method"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In structural engineering, the matrix stiffness method (or simply stiffness method, also known as Direct stiffness method) is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. For example, if k is the stiffness of a spring that is subject to a force Q, the spring's stiffness relation is:

where q is the spring deformation. This relation gives q = Q/k as the resulting spring deformation.