A 0 = α − 1 π ∫ 0 π d Z ¯ d x ( θ ) d θ {\displaystyle A_{0}=\alpha -{\frac {1}{\pi }}\int _{0}^{\pi }{\frac {d{\overline {Z}}}{dx}}(\theta )d\theta }
A n = 2 π ∫ 0 π d Z ¯ d x ( θ ) cos ( n θ ) d θ {\displaystyle A_{n}={\frac {2}{\pi }}\int _{0}^{\pi }{\frac {d{\overline {Z}}}{dx}}(\theta )\cos(n\theta )d\theta }
L ( x ) = ∫ 0 x w ( x ∗ ) d x ∗ = ∫ 0 x c 1 − 4 x ∗ 2 b 2 d x ∗ {\displaystyle L(x)=\int _{0}^{x}w(x^{*})dx^{*}=\int _{0}^{x}c{\sqrt {1-{\frac {4x^{*2}}{b^{2}}}}}dx^{*}}
where:
c e n t r o i d = ∫ 0 x x ∗ c 1 − 4 x ∗ 2 b 2 d x ∗ ∫ 0 x c 1 − 4 x ∗ 2 b 2 d x ∗ {\displaystyle \mathrm {centroid} ={\frac {\int _{0}^{x}x^{*}c{\sqrt {1-{\frac {4x^{*2}}{b^{2}}}}}dx^{*}}{\int _{0}^{x}c{\sqrt {1-{\frac {4x^{*2}}{b^{2}}}}}dx^{*}}}}