Jump to content

Strachey method for magic squares

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Melchoir (talk | contribs) at 08:38, 23 February 2008 (link singly even). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Strachey method for magic squares is an algorithm for generating magic squares of singly even order 4n+2.

Example of magic square of order 6 constructed with the Strachey method:

 example
35  	1  	6  	26  	19  	24
3 	32 	7 	21 	23 	25
31 	9 	2 	22 	27 	20
8 	28 	33 	17 	10 	15
30 	5 	34 	12 	14 	16
4 	36 	29 	13 	18 	11

Strachy's method of construction of singly even magic square of order k=4*n+2 1.Divide the grid into 4 quarters each having k^2/4 cells and name them crosswise thus A C D B 2. Using the Siamese method( De la Loubiere method) complete the individual magic squares of odd order 2*n+1 in subsquares A,B,C,D, first filling up the subsquare A with the numbers 1 to k^2/4, then the subsquare B with the numbers k^2/4 +1 to 2*k^2/4,then the subsquare C with the numbers 2*k^2/4 +1 to 3*k^2/4, then the subsquare D with the numbers 3*k^2/4 +1 to k^2

17 24 1 8 15 67 74 51 58 65 23 5 7 14 16 73 55 57 64 66 4 6 13 20 22 54 56 63 70 72 10 12 19 21 3 60 62 69 71 53 11 18 25 2 9 61 68 75 52 59 92 99 76 83 90 42 49 26 33 40 98 80 82 89 91 48 30 32 39 41 79 81 88 95 97 29 31 38 45 47 85 87 94 96 78 35 37 44 46 28 86 93 100 77 84 36 43 50 27 34

3. Exchange the leftmost n columns in subsquare A with the corresponding columns of subsquare D

'92 '99 1 8 15 67 74 51 58 65

98 807 14 16 73 55 57 64 66

79 81 13 20 22 54 56 63 70 72

85 87 19 21 3 60 62 69 71 53

86 93 25 2 9 61 68 75 52 59

17 24 76 83 90 42 49 26 33 40

23 5 82 89 91 48 30 32 39 41

4 6 88 95 97 29 31 38 45 47

10 12 94 96 78 35 37 44 46 28

11 18 100 77 84 36 43 50 27 34


4. Exchange the rightmost n-1 columns in subsquare C with the corresponding columns of subsquare B

92 99 1 8 15 67 74 51 58 40

98 80 7 14 16 73 55 57 64 41

79 81 13 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28

86 93 25 2 9 61 68 75 52 34

17 24 76 83 90 42 49 26 33 65

23 5 82 89 91 48 30 32 39 66

4 6 88 95 97 29 31 38 45 72

10 12 94 96 78 35 37 44 46 53

11 18 100 77 84 36 43 50 27 59


5 Exchange the middle cell of the leftmost column of subsquare A with the corresponding cell of subsquare D. Exchange the central cell in subsquare A with the corresponding cell of subsquare D 92 99 1 8 15 67 74 51 58 40

98 80 7 14 16 73 55 57 64 41

4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28

86 93 25 2 9 61 68 75 52 34

17 24 76 83 90 42 49 26 33 65

23 5 82 89 91 48 30 32 39 66

79 6 13 95 97 29 31 38 45 72

10 12 94 96 78 35 37 44 46 53

11 18 100 77 84 36 43 50 27 59


The result is a magic square of order k=4*n+2

From W W Rouse Ball Mathematical Recreations and Essays, (1911)