Jump to content

Talk:Extraneous and missing solutions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Tparameter (talk | contribs) at 01:56, 19 January 2008 (First Example). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

First Example

Wow. The first example in this article is absolutely terrible. It's obvious at a glance that solutions where x=2 or x=-2 are not valid. After deriving x=-2, we have the statement, "We arrive at what appears to be a solution rather easily. However, something very strange occurs when we substitute the solution found back into the original equation..." Actually, nothing strange occurs at all. The solution is not part of the domain of potential solutions - which should be obvious before starting. {sigh}. Of course, the second example is even worse. I would personally improve this article if I had any idea what the point of it is. Anyone else? Tparameter (talk) 00:58, 19 January 2008 (UTC)[reply]

How about an example where we're seeking strictly real solutions to a quadratic equation that also has "extraneous" imaginary solutions? Alternatively, maybe we create an example where we have an explicit given domain where we are only interested in positive solutions - but, there are also negative extraneous solutions. Tparameter (talk) 01:56, 19 January 2008 (UTC)[reply]