From Wikipedia, the free encyclopedia
A Lommel differential equation , named after Eugen von Lommel , is an ordinary differential equation that generalizes the Bessel differential equation :
z
2
d
2
y
d
z
2
+
z
d
y
d
z
−
(
z
2
−
v
2
)
y
=
k
z
μ
+
1
.
{\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}-(z^{2}-v^{2})y=kz^{\mu +1}.}
A further generalization yields:
z
2
d
2
y
d
z
2
+
z
d
y
d
z
−
(
z
2
−
v
2
)
y
=
±
k
z
μ
+
1
.
{\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}-(z^{2}-v^{2})y=\pm kz^{\mu +1}.}
The solutions for these are given by the Lommel functions
y
=
1
2
π
k
[
Y
γ
(
z
)
∫
0
z
Z
μ
J
γ
(
z
)
d
z
−
J
γ
(
z
)
∫
0
z
Z
μ
Y
γ
(
z
)
d
z
]
{\displaystyle y={\frac {1}{2}}\pi k\lbrack Y_{\gamma }(z)\int _{0}^{z}Z^{\mu }J_{\gamma }(z)dz-J_{\gamma }(z)\int _{0}^{z}Z^{\mu }Y_{\gamma }(z)dz\rbrack }
for
k
>
0
{\displaystyle k>0}
, where
J
γ
(
z
{\displaystyle J_{\gamma }(z}
) is a Bessel function of the first kind, and
Y
γ
(
z
{\displaystyle Y_{\gamma }(z}
) a Bessel function of the second kind. For
k
<
0
{\displaystyle k<0}
the Lommel function becomes
y
=
I
γ
(
z
)
k
[
Y
γ
(
z
)
∫
0
z
Z
μ
K
γ
(
z
)
d
z
−
J
γ
(
z
)
∫
0
z
Z
μ
I
γ
(
z
)
d
z
]
{\displaystyle y=I_{\gamma }(z)k\lbrack Y_{\gamma }(z)\int _{0}^{z}Z^{\mu }K_{\gamma }(z)dz-J_{\gamma }(z)\int _{0}^{z}Z^{\mu }I_{\gamma }(z)dz\rbrack }
where
K
γ
(
z
{\displaystyle K_{\gamma }(z}
) is a modified Bessel function of the first kind, and
I
γ
(
z
{\displaystyle I_{\gamma }(z}
) a modified Bessel function of the second kind.
The second-order ordinary differential equation
y
″
+
g
(
y
)
y
′
2
+
f
(
x
)
y
′
=
0
{\displaystyle y''+g(y){y'}^{2}+f(x)y'=0\,}
is sometimes also called the Lommel differential equation.
See also
References