Jump to content

Talk:Booth's multiplication algorithm

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Captain Zyrain (talk | contribs) at 20:53, 14 October 2007 (4 times thru the loop). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Here is a reference to Booth's paper:

A. D. Booth. A Signed Binary Multiplication Technique, Quarterly Journal of Mechanics and Applied Mathematics 4 (1951), 236--240.

This shows that Booth proposed his multiplication technique in 1951. The article gives a date of "around 1957".

-James

U can get the pdf copy of the paper ("A Signed Binary Multiplication Technique")at the given URL:

[[1]]

Get it for better knowledge of Booth's Multiplier.

-Prasad Babu P (INDIA)


Booth actually has 2 algorithms. The first one was found to contain a flaw, so the second algorithm is the one that is now used and referenced in industry as Booth's Algorithm, since no one uses his original algorithm. - I suggest having both algorithms on this page(I shall do this if I have time). -source= class @ San Jose State University CS147

-Oliver Seet (USA) (student)

error in example

Please correct me if I'm wrong, but I think that there should be -4 × 3 instead of -6 × 2. Because 0011 is 3 (and 1101 is -3 in two's complement notation) and 1100 is -4 in two's complement notation. Of course, the product is the same. 89.248.248.26 11:20, 5 April 2007 (UTC)[reply]

Improved method that handles multiplication by the minimum negative number

The described method in the article can't handle multiplications like -128 x 1 (when using 8 bits). The problem arises from the fact that -128 is the minimum negative number when using 8 bits for representation. I have made a minor modification in the method and added one more example to show the improved technique. Hope that everything is OK. Prekageo 12:22, 15 August 2007 (UTC)[reply]

Number of times to perform the loop

In Booth's_multiplication_algorithm#Example, how do you know to perform the loop 4 times? Captain Zyrain 20:53, 14 October 2007 (UTC)[reply]