Localization of a topological space
Appearance
In mathematics, well behaved topological spaces can be localized at primes, in a similar way to the localization of a ring at a prime. This construction is due to Dennis Sullivan.
Definitions
We let A be a subring of the rational numbers, and let X be a simply connected CW complex. Then there is a simply connected CW complex Y together with a map from X to Y such that
- Y is A-local; this means that all its homology groups are modules over A
- The map from X to Y is universal for (homotopy classes of) maps from X to A-local CW complexes.
This space Y is unique up to homotopy equivalence, and is called the localization of X at A.
If A is the localization of Z at a prime p, then the space Y is called the localization of X at p
The map from X to Y induces isomorphisms from the A-localizations of the homology and homotopy groups of X to the homology and homotopy groups of Y.
References
- Adams (1978), Infinite loop spaces, pp. 74–95