From Wikipedia, the free encyclopedia
Proper in control theory
Proper denotes a transfer function where the degree of the numerator does not exceed the degree of the denominator.
Example
The following transfer function is proper
G
(
s
)
=
N
(
s
)
D
(
s
)
=
s
4
+
n
1
s
3
+
n
2
s
2
+
n
3
s
+
n
4
s
4
+
d
1
s
3
+
d
2
s
2
+
d
3
s
+
d
4
{\displaystyle {\textbf {G}}(s)={\frac {{\textbf {N}}(s)}{{\textbf {D}}(s)}}={\frac {s^{4}+n_{1}s^{3}+n_{2}s^{2}+n_{3}s+n_{4}}{s^{4}+d_{1}s^{3}+d_{2}s^{2}+d_{3}s+d_{4}}}}
because
d
e
g
(
N
(
s
)
)
=
4
≤
d
e
g
(
D
(
s
)
)
=
4
{\displaystyle deg({\textbf {N}}(s))=4\leq deg({\textbf {D}}(s))=4}
.
The following transfer function however, is not proper
G
(
s
)
=
N
(
s
)
D
(
s
)
=
s
4
+
n
1
s
3
+
n
2
s
2
+
n
3
s
+
n
4
d
1
s
3
+
d
2
s
2
+
d
3
s
+
d
4
{\displaystyle {\textbf {G}}(s)={\frac {{\textbf {N}}(s)}{{\textbf {D}}(s)}}={\frac {s^{4}+n_{1}s^{3}+n_{2}s^{2}+n_{3}s+n_{4}}{d_{1}s^{3}+d_{2}s^{2}+d_{3}s+d_{4}}}}
because
d
e
g
(
N
(
s
)
)
=
4
≰
d
e
g
(
D
(
s
)
)
=
3
{\displaystyle deg({\textbf {N}}(s))=4\nleq deg({\textbf {D}}(s))=3}
.
Implications
A proper transfer function will never grow unbounded as the frequency approaces infinity.
|
G
(
∞
)
|
<
∞
{\displaystyle |{\textbf {G}}(\infty )|<\infty }
Strictly proper .