Data abstraction
Data abstraction is the enforcement of a clear separation between the abstract properties of a data type and the concrete details of its implementation. The abstract properties are those that are visible to client code that makes use of the data type--the interface to the data type--while the concrete implementation is kept entirely private, and indeed can change, for example to incorporate efficiency improvements over time. The idea is that such changes are not supposed to have any impact on client code, since they involve no difference in the abstract behaviour.
For example, one could define an abstract data type called lookup table, where keys are uniquely associated with values, and values may be retrieved by specifying their corresponding keys. Such a lookup table may be implemented in various ways: as a hash table, a binary search tree, or even a simple linear list (which is actually quite efficient for small data sets). As far as client code is concerned, the abstract properties of the type are the same in each case.
Of course, this all relies on getting the details of the interface right in the first place, since any changes there can have major impacts on client code. Another way to look at this is that the interface forms a contract on agreed behaviour between the data type and client code; anything not spelled out in the contract is subject to change without notice.
Languages that implement data abstraction include Ada and Modula-2. Object-oriented languages are commonly claimed to offer data abstraction; however, their inheritance concept tends to put information in the interface that more properly belongs in the implementation; thus, changes to such information ends up impacting client code, leading directly to the fragile base class problem.