Jump to content

Data preprocessing

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Kotsiantis (talk | contribs) at 21:17, 22 July 2007 (Created page with 'Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost (Pyle, 1999). If...'). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost (Pyle, 1999). If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Kotsiantis et al. (2006) present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.
References
S. Kotsiantis, D. Kanellopoulos, P. Pintelas, Data Preprocessing for Supervised Leaning, International Journal of Computer Science, 2006, Vol 1 N. 2, pp 111-117.
Pyle, D., 1999. Data Preparation for Data Mining. Morgan Kaufmann Publishers, Los Altos, CA.