Gamma-Ordered Generalized Normal Distribution
The multivariate Normal distribution, [1], is extended due to the Logarithmic Sobolev Inequalities (LSI), [2], and can act as a family of distributions based on a “shape” parameter. This shape parameter
γ
∈
R
−
[
0
,
1
]
{\displaystyle \gamma \in \mathbb {R} -[0,1]}
creates along with parameters of position,
μ
∈
R
p
{\displaystyle \mu \in \mathbb {R} ^{p}}
, and dispersion,
Σ
∈
R
p
×
p
{\displaystyle \Sigma \in \mathbb {R} ^{p\times p}}
, the
N
γ
(
μ
,
Σ
)
{\displaystyle N_{\gamma }(\mu ,\Sigma )}
family of distributions with probability density function, [3]
(1)
φ
γ
(
x
)
=
C
exp
{
−
γ
−
1
γ
[
Q
(
x
)
]
γ
2
(
γ
−
1
)
}
,
{\displaystyle \varphi _{\gamma }(x)=C\exp \left\{-{\frac {\gamma -1}{\gamma }}\left[Q(x)\right]^{\frac {\gamma }{2(\gamma -1)}}\right\},}
with
(2)
C
=
C
p
(
μ
,
Σ
;
γ
)
=
1
π
p
/
2
|
Σ
|
1
/
2
⋅
Γ
(
p
2
+
1
)
Γ
(
p
(
γ
−
1
)
γ
+
1
)
(
γ
−
1
γ
)
p
(
γ
−
1
)
/
γ
,
γ
0
=
γ
−
1
γ
,
γ
0
γ
1
=
1
,
{\displaystyle C=C_{p}(\mu ,\Sigma ;\gamma )={\frac {1}{\pi ^{p/2}|\Sigma |^{1/2}}}\cdot {\frac {\Gamma \left({\frac {p}{2}}+1\right)}{\Gamma \left({\frac {p(\gamma -1)}{\gamma }}+1\right)}}\left({\frac {\gamma -1}{\gamma }}\right)^{p(\gamma -1)/\gamma },\quad \gamma _{0}={\frac {\gamma -1}{\gamma }},\quad \gamma _{0}\gamma _{1}=1,}
(3)
Q
(
x
)
=
⟨
x
−
μ
,
Σ
−
1
(
x
−
μ
)
⟩
,
μ
∈
R
p
,
Σ
∈
R
p
×
p
,
{\displaystyle Q(x)=\langle x-\mu ,\Sigma ^{-1}(x-\mu )\rangle ,\quad \mu \in \mathbb {R} ^{p},\quad \Sigma \in \mathbb {R} ^{p\times p},}
For
p
=
2
{\displaystyle p=2}
a typical plot is Figure 1
Consider the
N
γ
(
μ
,
σ
2
)
,
p
=
1
{\displaystyle N_{\gamma }(\mu ,\sigma ^{2}),\ p=1}
, see [6], with position (mean)
μ
{\displaystyle \mu }
, positive scale parameter
σ
{\displaystyle \sigma }
, extra shape parameter
γ
∈
R
−
[
0
,
1
]
{\displaystyle \gamma \in \mathbb {R} -[0,1]}
and pdf
φ
γ
(
x
;
μ
,
σ
2
)
{\displaystyle \varphi _{\gamma }(x;\mu ,\sigma ^{2})}
coming from (1)–(3) and given by, see Figure 2,
(4)
φ
γ
(
x
;
μ
,
σ
2
)
=
λ
γ
σ
π
exp
{
−
γ
0
(
|
x
−
μ
|
σ
)
γ
1
}
,
{\displaystyle \varphi _{\gamma }(x;\mu ,\sigma ^{2})={\frac {\lambda _{\gamma }}{\sigma {\sqrt {\pi }}}}\exp \left\{-\gamma _{0}\left({\frac {|x-\mu |}{\sigma }}\right)^{\gamma _{1}}\right\},}
Figure 1: 3D plots of φγ (x; 0, I) for γ = 2 (left) and γ = 3 (right), with p = 2
with
(5)
λ
γ
=
Γ
(
1
2
+
1
)
Γ
(
γ
−
1
γ
+
1
)
(
γ
−
1
γ
)
γ
−
1
γ
=
Γ
(
1
2
+
1
)
Γ
(
γ
0
+
1
)
⋅
γ
0
γ
0
.
{\displaystyle \lambda _{\gamma }={\frac {\Gamma \left({\frac {1}{2}}+1\right)}{\Gamma \left({\frac {\gamma -1}{\gamma }}+1\right)}}\left({\frac {\gamma -1}{\gamma }}\right)^{\frac {\gamma -1}{\gamma }}={\frac {\Gamma \left({\frac {1}{2}}+1\right)}{\Gamma (\gamma _{0}+1)}}\cdot \gamma _{0}^{\gamma _{0}}.}
Let
Y
∼
N
γ
(
μ
,
σ
2
)
{\displaystyle Y\sim N_{\gamma }(\mu ,\sigma ^{2})}
then
(6)
β
n
=
E
(
Y
n
)
=
∑
even
r
=
0
n
(
n
r
)
μ
r
σ
n
−
r
⋅
γ
0
−
n
⋅
γ
0
n
−
r
⋅
Γ
(
(
n
−
r
+
1
)
γ
0
)
Γ
(
γ
0
)
n
−
r
.
{\displaystyle \beta _{n}=\mathbb {E} (Y^{n})=\sum _{{\text{even }}r=0}^{n}{\binom {n}{r}}\mu ^{r}\sigma ^{n-r}\cdot \gamma _{0}^{-n}\cdot \gamma _{0}^{n-r}\cdot {\frac {\Gamma ((n-r+1)\gamma _{0})}{\Gamma (\gamma _{0})^{n-r}}}.}
When
γ
=
2
{\displaystyle \gamma =2}
, then
β
1
=
μ
,
β
2
=
μ
2
+
σ
2
,
β
3
=
μ
3
+
3
μ
σ
2
,
β
4
=
μ
4
+
6
μ
2
σ
2
+
3
σ
4
.
{\displaystyle \beta _{1}=\mu ,\quad \beta _{2}=\mu ^{2}+\sigma ^{2},\quad \beta _{3}=\mu ^{3}+3\mu \sigma ^{2},\quad \beta _{4}=\mu ^{4}+6\mu ^{2}\sigma ^{2}+3\sigma ^{4}.}
Moreover, [6],
(7)
Var
(
Y
)
=
γ
0
−
2
⋅
Γ
(
3
γ
0
)
Γ
(
γ
0
)
⋅
σ
2
{\displaystyle \operatorname {Var} (Y)=\gamma _{0}^{-2}\cdot {\frac {\Gamma (3\gamma _{0})}{\Gamma (\gamma _{0})}}\cdot \sigma ^{2}}
and
(8)
Kurt
(
Y
)
=
Γ
(
γ
0
)
Γ
(
5
γ
0
)
Γ
2
(
3
γ
0
)
−
3.
{\displaystyle \operatorname {Kurt} (Y)={\frac {\Gamma (\gamma _{0})\Gamma (5\gamma _{0})}{\Gamma ^{2}(3\gamma _{0})}}-3.}
The Laplace transform can be obtained, [4],
Figure 2: The pdf of the standardized φ₍γ₎(x) for γ = 2 (Normal), γ = −0.1 (near to Dirac), γ = 1.05 (near to Uniform) and γ = 30 (near to Laplace), with p = 1.