Matrix addition

In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together.
For a vector, , adding two matrices would have the geometric effect of applying each matrix transformation separately onto , then adding the transformed vectors.
However, there are other operations that could also be considered addition for matrices, such as the direct sum and the Kronecker sum.
Entrywise sum
Two matrices must have an equal number of rows and columns to be added.[1] In which case, the sum of two matrices A and B will be a matrix which has the same number of rows and columns as A and B. The sum of A and B, denoted A + B, is computed by adding corresponding elements of A and B:[2][3]
Or more concisely (assuming that A + B = C):[4][5]
For example:
Similarly, it is also possible to subtract one matrix from another, as long as they have the same dimensions. The difference of A and B, denoted A − B, is computed by subtracting elements of B from corresponding elements of A, and has the same dimensions as A and B. For example:
See also
Notes
- ^ Elementary Linear Algebra by Rorres Anton 10e p53
- ^ Lipschutz & Lipson 2017.
- ^ Riley, Hobson & Bence 2006.
- ^ Weisstein, Eric W. "Matrix Addition". mathworld.wolfram.com. Retrieved 2020-09-07.
- ^ "Finding the Sum and Difference of Two Matrices | College Algebra". courses.lumenlearning.com. Retrieved 2020-09-07.
References
- Lipschutz, Seymour; Lipson, Marc (2017). Schaum's Outline of Linear Algebra (6 ed.). McGraw-Hill Education. ISBN 9781260011449.
- Riley, K.F.; Hobson, M.P.; Bence, S.J. (2006). Mathematical methods for physics and engineering (3 ed.). Cambridge University Press. doi:10.1017/CBO9780511810763. ISBN 978-0-521-86153-3.