Draft:Atom Computing
![]() | Review waiting, please be patient.
This may take 3 months or more, since drafts are reviewed in no specific order. There are 2,680 pending submissions waiting for review.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
Reviewer tools
|
Comment: In accordance with the Wikimedia Foundation's Terms of Use, I disclose that I have been paid by my employer for my contributions to this article. QuantumComputingMedia (talk) 17:03, 16 April 2025 (UTC)
Company type | Private company |
---|---|
Industry | Quantum Computing |
Founded | 2018 |
Founders |
|
Headquarters | , United States |
Key people | Ben Bloom, CEO
|
Website | www |
Atom Computing Inc. is a quantum computing company headquartered in Berkeley, California with a commercial operations facility in Boulder, Colorado.[1] The company develops quantum computers based on neutral atom technology.
History
[edit]Atom Computing was founded by Ben Bloom and Jonathan King in 2018[2] with $5M in seed funding.[3][4]
In 2021 the company secured $15M in Series A funding[5][6] and announced a 100-qubit prototype system.[6][7]
By early 2022 the company secured $60M in Series B funding[8][9] and expanded its activities by opening a commercial operations facility in Boulder, Colorado.[1][10]
In 2023 Atom Computing announced its second-generation quantum computer with over 1,000 qubits.[11][12]
Microsoft and Atom Computing announced in late 2024 that they had been collaborating on a commercial quantum computer that has logical qubits by combining Microsoft's work on quantum error correction with Atom's over-1,000-qubit system.[13][14][15][16][17]
Technology
[edit]Atom Computing's technology is based on neutral atoms, specifically alkaline earth(-like) metals such as strontium and ytterbium.[1] By manipulating the atoms in a vacuum chamber with laser beams[3][18], quantum information can be written into the nuclear spin of the atoms to perform gate operations[19][20][21] and execute quantum circuits.
Along with several academic groups, Atom Computing has demonstrated how to use this technology to perform mid-circuit measurements[22] on ancilla qubits[23][24][25][26], create arrays of over 1,000 qubits[27][28][29], and perform entangling gates.[30][31]
In November 2024, Atom Computing, together with researchers from Microsoft, demonstrated the entanglement of 24 logical qubits and running a Bernstein–Vazirani algorithm with 28 logical qubits on Atom Computing's hardware.[32][13][17]
Recognition
[edit]In 2024 the Colorado Technology Association recognized Atom Computing as the "Emerging Tech Company of the Year"[33] and Fast Company recognized the company as one of "The 10 most innovative computing companies in 2025".[34]
References
[edit]- ^ a b c Smith-Goodson, Paul (24 October 2023). "Atom Computing Announces Record-Breaking 1,225-Qubit Quantum Computer". Forbes. Retrieved 3 March 2025.
- ^ Himes, John (7 November 2023). "Atom Computing's Quantum Tech and the Story Behind It". Dynamic Tech Media. Retrieved 3 March 2025.
- ^ a b Chen, Sophia (26 September 2018). "Arrays of atoms emerge as dark horse candidate to power quantum computers". Science. Retrieved 3 March 2025.
- ^ Swayne, Matt (4 December 2019). "TQD Exclusive: Interview with Atom Computing CEO, Ben Bloom". The Quantum Insider. Retrieved 3 March 2025.
- ^ Smith-Goodson, Paul (18 November 2021). "Atom Computing: A Quantum Computing Startup That Believes It Can Ultimately Win The Qubit Race". Forbes. Retrieved 3 March 2025.
- ^ a b Takahashi, Dean (21 July 2021). "Atom Computing raising $15M to create Phoenix quantum computing system". VentureBeat. Retrieved 3 March 2025.
- ^ Parker, Jason (21 July 2021). "Quantum computing startup with executive office in Cary raises $15M, launches first-generation computer". Forbes. Retrieved 3 March 2025.
- ^ Smith-Goodson, Paul (25 January 2022). "Atom Computing Plans To Build A Bigger And Better High-Tech Quantum Computer With Its Latest $60 Million Series B Funding". Forbes. Retrieved 3 March 2025.
- ^ Russell, John (25 January 2022). "Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology". HPCwire. Retrieved 3 March 2025.
- ^ Lee, Jane (28 September 2022). "Atom Computing to invest $100 mln in Colorado for quantum computer center". Reuters. Retrieved 3 March 2025.
- ^ Timmer, John (24 October 2023). "Atom Computing is the first to announce a 1,000+ qubit quantum computer". Ars Technica. Retrieved 3 March 2025.
- ^ Wilkins, Alex (24 October 2023). "Record-breaking quantum computer has more than 1000 qubits". New Scientist. Retrieved 3 March 2025.
- ^ a b Lardinois, Frederic (19 November 2024). "Microsoft and Atom Computing will launch a commercial quantum computer in 2025". TechCrunch. Retrieved 3 March 2025.
- ^ "Microsoft and Atom Computing Are Taking Orders for a Fault Tolerant Quantum Computer with 1K (Physical) / 50 (Logical) Qubits for Delivery Next Year". Quantum Computing Report. 19 November 2024. Retrieved 3 March 2025.
- ^ Swayne, Matt (19 November 2024). "In Step Toward Scientific Advantage, Microsoft and Atom Computing Announce The Launch of a Quantum Machine with Record-Breaking Logical Qubits". The Quantum Insider. Retrieved 3 March 2025.
- ^ Kelley, Alexandra (19 November 2024). "Microsoft and Atom Computing unveil 24-qubit quantum machine". NextGov. Retrieved 3 March 2025.
- ^ a b Russell, John (20 January 2025). "Atom Computing, Microsoft Roll Out On-Premise System Supporting 50 Logical Qubits". HPCwire. Retrieved 3 March 2025.
- ^ Hu, Charlotte (10 February 2023). "How neutral atoms could help power next-gen quantum computers". Popular Science. Retrieved 3 March 2025.
- ^ Jenkins, Alec; Lis, Joanna; Senoo, Aruku; McGrew, William; Kaufman, Adam (3 May 2022). "Ytterbium Nuclear-Spin Qubits in an Optical Tweezer Array". Physical Review X. 12 (2): 021027. arXiv:2112.06732. Bibcode:2022PhRvX..12b1027J. doi:10.1103/PhysRevX.12.021027. Retrieved 3 March 2025.
- ^ Ma, Shuo; Burgers, Alex; Liu, Genyue; Wilson, Jack; Zhang, Bichen; Thompson, Jeff (3 May 2022). "Universal Gate Operations on Nuclear Spin Qubits in an Optical Tweezer Array of Atoms". Physical Review X. 12: 021028. arXiv:2112.06799. doi:10.1103/PhysRevX.12.021028. Retrieved 3 March 2025.
- ^ Barnes, Katrina; Battaglino, Peter; Bloom, Ben; Cassella, Kayleigh; Coxe, Robin; Crisosto, Nicole; King, Jonathan; Kondov, Stanimir; Kotru, Krish; Larsen, Stuart; Lauigan, Joseph; Lester, Brian; McDonald, Mickey; Megidish, Eli; Narayanaswami, Sandeep; Nishiguchi, Ciro; Notermans, Remy; Peng, Lucas; Ryou, Albert; Wu, Tsung-Yao; Yarwood, Michael (19 May 2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications. 13: 2779. arXiv:2108.04790. Bibcode:2022NatCo..13.2779B. doi:10.1038/s41467-022-29977-z. Retrieved 3 March 2025.
- ^ Rudinger, Kenneth; Ribeill, Guilhem; Govia, Luke; Ware, Matthew; Nielsen, Erik; Young, Kevin; Ohki, Thomas; Blume-Kohout, Robin; Proctor, Timothy (12 January 2022). "Characterizing Midcircuit Measurements on a Superconducting Qubit Using Gate Set Tomography". Physical Review Applied. 17 (1): 014014. arXiv:2103.03008. Bibcode:2022PhRvP..17a4014R. doi:10.1103/PhysRevApplied.17.014014. Retrieved 3 March 2025.
- ^ Deist, Emma; Lu, Yue-Hui; Ho, Jacquelyn; Pasha, Mary Kate; Zeiher, Johannes; Yan, Zhenjie; Stamper-Kurn, Dan (9 November 2022). "Mid-Circuit Cavity Measurement in a Neutral Atom Array". Physical Review Letters. 129 (20): 203602. arXiv:2205.14138. Bibcode:2022PhRvL.129t3602D. doi:10.1103/PhysRevLett.129.203602. PMID 36462020. Retrieved 3 March 2025.
- ^ Lis, Joanna; Senoo, Aruku; McGrew, William; Rönchen, Felix; Jenkins, Alec; Kaufman, Adam (22 November 2023). "Midcircuit Operations Using the omg Architecture in Neutral Atom Arrays". Physical Review X. 13 (4): 041035. arXiv:2305.19266. Bibcode:2023PhRvX..13d1035L. doi:10.1103/PhysRevX.13.041035. Retrieved 3 March 2025.
- ^ Norcia, Matt; Cairncross, Will; Barnes, Katrina; Battaglino, Peter; Brown, Andrew; Brown, Mark; Cassella, Kayleigh; Chen, Cheng-An; Coxe, Robin; Crow, Daniel; Epstein, Jeffrey; Griger, Chris; Jones, Antonia; Kim, Hyosub; Kindem, Jon; King, Jonathan; Kondov, Stanimir; Kotru, Krish; Lauigan, Joseph; Li, Ming; Lu, Mingwu; Megidish, Eli; Marjanovic, Jan; McDonald, Mickey; Mittiga, Thomas; Muniz, Juan; Narayanaswami, Sandeep; Nishiguchi, Ciro; Notermans, Remy; Paule, Timothy; Pawlak, Kelly; Peng, Lucas; Ryou, Albert; Smull, Aaron; Stack, Daniel; Stone, Mark; Sucich, Amber; Urbanek, Miro; Van de Veerdonk, René; Vendeiro, Zachary; Wilkason, TJ; Wu, Tsung-Yao; Xie, Xin; Zhang, Xiaogang; Bloom, Ben (22 November 2023). "Midcircuit Qubit Measurement and Rearrangement in a 171Yb Atomic Array". Physical Review X. 13 (4): 041034. arXiv:2305.19119. Bibcode:2023PhRvX..13d1034N. doi:10.1103/PhysRevX.13.041034. Retrieved 3 March 2025.
- ^ Graham, T.M.; Phuttitarn, L.; Chinnarasu, R.; Song, Y.; Poole, C.; Jooya, K.; Scott, J.; Scott, A.; Eichler, P.; Saffman, M. (15 December 2023). "Midcircuit Measurements on a Single-Species Neutral Alkali Atom Quantum Processor". Physical Review X. 13 (4): 041051. arXiv:2205.14138. Bibcode:2023PhRvX..13d1051G. doi:10.1103/PhysRevX.13.041051. Retrieved 3 March 2025.
- ^ Gyger, Flavien; Ammenwerth, Maximilian; Tao, Renhao; Timme, Hendrik; Snigirev, Stepan; Bloch, Immanuel; Zeiher, Johannes (25 July 2024). "Continuous operation of large-scale atom arrays in optical lattices". Physical Review Research. 6 (3): 033104. arXiv:2402.04994. Bibcode:2024PhRvR...6c3104G. doi:10.1103/PhysRevResearch.6.033104. Retrieved 3 March 2025.
- ^ Manetsch, Hannah; Nomura, Gyohei; Bataille, Elie; Leung, Kon; Lv, Xudong; Endres, Manuel (6 December 2024). "A tweezer array with 6100 highly coherent atomic qubits". arXiv:2402.04994.
- ^ Norcia, Matt; Kim, Hyosub; Cairncross, Will; Stone, Mark; Ryou, Albert; Jaffe, Matt; Brown, Mark; Barnes, Katrina; Battaglino, Peter; Bohdanowicz, Tom; Brown, Andrew; Cassella, Kayleigh; Chen, Cheng-An; Coxe, Robin; Crow, Daniel; Epstein, Jeffrey; Griger, Chris; Halperin, Eli; Hummel, Frederic; Jones, Antonia; Kindem, Jon; King, Jonathan; Kotru, Krish; Lauigan, Joseph; Li, Ming; Lu, Mingwu; Megidish, Eli; Marjanovic, Jan; McDonald, Mickey; Mittiga, Thomas; Muniz, Juan; Narayanaswami, Sandeep; Nishiguchi, Ciro; Paule, Timothy; Pawlak, Kelly; Peng, Lucas; Pudenz, Kristen; Rodríguez Pérez, David; Smull, Aaron; Stack, Daniel; Urbanek, Miro; Van de Veerdonk, René; Vendeiro, Zachary; Wadleigh, Laura; Wilkason, TJ; Wu, Tsung-Yao; Xie, Xin; Zalys-Geller, Evan; Zhang, Xiaogang; Bloom, Ben (25 July 2024). "Iterative Assembly of 171Yb Atom Arrays with Cavity-Enhanced Optical Lattices". Physical Review X Quantum. 5 (3): 030316. arXiv:2401.16177. doi:10.1103/PRXQuantum.5.030316. Retrieved 3 March 2025.
- ^ Madjarov, Ivaylo; Covey, Jacob; Shaw, Adam; Choi, Joonhee; Kale, Anant; Cooper, Alexandre; Pichler, Hannes; Schkolnik, Vladimir; Williams, Jason; Endres, Manuel (25 May 2020). "High-fidelity entanglement and detection of alkaline-earth Rydberg atoms". Nature Physics. 16 (8): 857–861. arXiv:2001.04455. Bibcode:2020NatPh..16..857M. doi:10.1038/s41567-020-0903-z. Retrieved 3 March 2025.
- ^ Muniz, Juan; Stone, Mark; Stack, Daniel; Jaffe, Matt; Kindem, Jon; Wadleigh, Laura; Zalys-Geller, Evan; Zhang, Xiaogang; Chen, Cheng-An; Norcia, Matt; Epstein, Jeffrey; Halperin, Eli; Hummel, Frederic; Wilkason, TJ; Li, Ming; Barnes, Katrina; Battaglino, Peter; Bohdanowicz, Tom; Booth, Graham; Brown, Andrew; Brown, Mark; Cairncross, Will; Cassella, Kayleigh; Coxe, Robin; Crow, Daniel; Feldkamp, Max; Griger, Chris; Heinz, Andre; Jones, Antonia; Kim, Hyosub; King, Jonathan; Kotru, Krish; Lauigan, Joseph; Marjanovic, Jan; Megidish, Eli; Meredith, Matt; McDonald, Mickey; Morshead, Ryan; Narayanaswami, Sandeep; Nishiguchi, Ciro; Paule, Timothy; Pawlak, Kelly; Pudenz, Kristen; Rodríguez Pérez, David; Ryou, Albert; Simon, Jon; Smull, Aaron; Urbanek, Miro; Van de Veerdonk, René; Vendeiro, Zachary; Wu, Tsung-Yao; Xie, Xin; Bloom, Ben (18 November 2024). "High-fidelity universal gates in the 171Yb ground state nuclear spin qubit". arXiv:2411.11708.
- ^ Reichardt, Ben; Paetznick, Adam; Aasen, David; Basov, Ivan; Bello-Rivas, Juan; Bonderson, Parsa; Chao, Rui; Van Dam, Wim; Hastings, Matthew; Da Silva, Marcus; Sundaram, Aarthi; Svore, Krysta; Vaschillo, Alexander; Wang, Zhenghan; Zanner, Matt; Cairncross, Will; Chen, Cheng-An; Crow, Daniel; Kim, Hyosub; Kindem, Jon; King, Jonathan; McDonald, Mickey; Norcia, Matt; Ryou, Albert; Stone, Mark; Wadleigh, Laura; Barnes, Katrina; Battaglino, Peter; Bohdanowicz, Tom; Booth, Graham; Brown, Andrew; Brown, Mark; Cassella, Kayleigh; Coxe, Robin; Epstein, Jeffrey; Feldkamp, Max; Griger, Chris; Halperin, Eli; Heinz, Andre; Hummel, Frederic; Jaffe, Matt; Jones, Antonia; Kapit, Eliot; Kotru, Krish; Lauigan, Joseph; Li, Ming; Marjanovic, Jan; Megidish, Eli; Meredith, Matt; Morshead, Ryan; Muniz, Juan; Narayanaswami, Sandeep; Nishiguchi, Ciro; Paule, Timothy; Pawlak, Kelly; Pudenz, Kristen; Rodríguez Pérez, David; Simon, Jon; Smull, Aaron; Stack, Daniel; Urbanek, Miro; Van de Veerdonk, René; Vendeiro, Zachary; Weverka, Robert; Wilkason, TJ; Wu, Tsung-Yao; Xie, Xin; Zalys-Geller, Evan; Zhang, Xiaogang; Bloom, Ben (18 November 2024). "Logical computation demonstrated with a neutral atom quantum processor". arXiv:2411.11822.
- ^ APEX Awards Emerging Company of the Year - Atom Computing on YouTube
- ^ "The 10 most innovative computing companies of 2025". Fast Company. 18 March 2025. Retrieved 3 March 2025.