Jump to content

Aluthge transform

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by JJMC89 bot III (talk | contribs) at 21:01, 14 April 2025 (Moving Category:Matrices to Category:Matrices (mathematics) per Wikipedia:Categories for discussion/Speedy). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics and more precisely in functional analysis, the Aluthge transformation is an operation defined on the set of bounded operators of a Hilbert space. It was introduced by Ariyadasa Aluthge to study p-hyponormal linear operators.[1]

Definition

[edit]

Let be a Hilbert space and let be the algebra of linear operators from to . By the polar decomposition theorem, there exists a unique partial isometry such that and , where is the square root of the operator . If and is its polar decomposition, the Aluthge transform of is the operator defined as:

More generally, for any real number , the -Aluthge transformation is defined as

Example

[edit]

For vectors , let denote the operator defined as

An elementary calculation[2] shows that if , then

Notes

[edit]
  1. ^ Aluthge, Ariyadasa (1990). "On p-hyponormal operators for 0 < p < 1". Integral Equations Operator Theory. 13 (3): 307–315. doi:10.1007/bf01199886.
  2. ^ Chabbabi, Fadil; Mbekhta, Mostafa (June 2017). "Jordan product maps commuting with the λ-Aluthge transform". Journal of Mathematical Analysis and Applications. 450 (1): 293–313. doi:10.1016/j.jmaa.2017.01.036.

References

[edit]
[edit]