Nonlinear electrodynamics
Appearance
This article, Nonlinear electrodynamics, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |
Comment: Would like to see better sourcing for this, only two research papers given. Sophisticatedevening🍷(talk) 13:43, 31 March 2025 (UTC)
In high-energy physics, nonlinear electrodynamics (NED or NLED) refers to a family of generalizations of Maxwell electrodynamics which describe electromagnetic fields that exhibit nonlinear dynamics.[1] For a theory to describe the electromagnetic field (a U(1) gauge field), its action must be gauge invariant; in the case of , for the theory to not have Faddeev-Popov ghosts, this constraint dictates that the Lagrangian of a nonlinear electrodynamics must be a function of only (the Maxwell Lagrangian) and (where is the Levi-Civita tensor).[1][2][3] Notable NED models include the Born-Infeld model,[4] the Euler-Heisenberg Lagrangian,[5] and the CP-violating Chern-Simons theory .[2][6][7]
References
- ^ a b Sorokin, Dmitri P. (2022). "Introductory Notes on Non-linear Electrodynamics and its Applications". Fortschritte der Physik. 70 (7–8). arXiv:2112.12118. doi:10.1002/prop.202200092.
- ^ a b Bi, Shihao; Tao, Jun (2021). "Holographic DC conductivity for backreacted NLED in massive gravity". Journal of High Energy Physics (6): 174. arXiv:2101.00912. Bibcode:2021JHEP...06..174B. doi:10.1007/JHEP06(2021)174.
- ^ . doi:https://doi.org/10.1515/zna-2024-0136.
{{cite journal}}
: Check|doi=
value (help); Cite journal requires|journal=
(help); External link in
(help); Missing or empty|doi=
|title=
(help) - ^ Born, M.; Infeld, L. (1934). "Foundations of the New Field Theory". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 144 (852): 425–451. Bibcode:1934RSPSA.144..425B. doi:10.1098/rspa.1934.0059.
- ^ Heisenberg, W.; Euler, H. (1936). "Folgerungen aus der Diracschen Theorie des Positrons". Zeitschrift für Physik (in German). 98 (11–12): 714–732. Bibcode:1936ZPhy...98..714H. doi:10.1007/bf01343663. ISSN 1434-6001.
- ^ Fu, Qi-Ming; Zhao, Li; Liu, Yu-Xiao (2021). "Weak deflection angle by electrically and magnetically charged black holes from nonlinear electrodynamics". Physical Review D. 104 (2): 024033. arXiv:2101.08409. doi:10.1103/PhysRevD.104.024033.
- ^ Delphenich, David (2003). "Nonlinear Electrodynamics and QED". arXiv:hep-th/0309108.