Network controllability

Network controllability concerns the structural controllability of a network. Controllability describes our ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs. This definition agrees well with our intuitive notion of control. The controllability of general directed and weighted complex networks has recently been the subject of intense study by a number of groups in wide variety of networks, worldwide. Recent studies by Sharma et al.[1] on multi-type biological networks (gene–gene, miRNA–gene, and protein–protein interaction networks) identified control targets in phenotypically characterized Osteosarcoma showing important role of genes and proteins responsible for maintaining tumor microenvironment.
Control of composite quantum systems and algebraic graph theory
A control theory of networks has also been developed in the context of universal control for composite quantum systems, where subsystems and their interactions are associated to nodes and links, respectively.[2] This framework permits formulation of Kalman's criterion with tools from algebraic graph theory via the minimum rank of a graph and related notions.[3][4]
See also
References
- ^ Sharma, Ankush; Cinti, Caterina; Capobianco, Enrico (2017). "Multitype Network-Guided Target Controllability in Phenotypically Characterized Osteosarcoma: Role of Tumor Microenvironment". Frontiers in Immunology. 8: 918. doi:10.3389/fimmu.2017.00918. ISSN 1664-3224. PMC 5536125. PMID 28824643.
- ^ Burgarth, Daniel; Giovannetti, Vittorio (2007-09-05). "Full Control by Locally Induced Relaxation". Physical Review Letters. 99 (10): 100501. arXiv:0704.3027. Bibcode:2007PhRvL..99j0501B. doi:10.1103/physrevlett.99.100501. ISSN 0031-9007. PMID 17930379. S2CID 6560929.
- ^ Burgarth, Daniel; D'Alessandro, Domenico; Hogben, Leslie; Severini, Simone; Young, Michael (2013). "Zero forcing, linear and quantum controllability for systems evolving on networks". IEEE Transactions on Automatic Control. 58 (9): 2349–2354. arXiv:1111.1475. doi:10.1109/TAC.2013.2250075. MR 3101617. S2CID 6939245.
- ^ S. O'Rourke, B. Touri, https://arxiv.org/abs/1511.05080 Archived 2016-10-18 at the Wayback Machine.