Jump to content

Library (computing)

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Stevebroshar (talk | contribs) at 11:39, 1 February 2025 (Linking: less noise). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Illustration of an application which uses libvorbisfile to play an Ogg Vorbis file

In computer science, a library is a collection of resources that is leveraged during software development to implement a computer program. Commonly, a library consists of executable code such as compiled functions and classes, or a library can be a collection of source code. A resource library may contain data such as images and text.

A library can be used by multiple, independent consumers (programs and other libraries). This differs from resources defined in a program which can usually only be used by that program. When a consumer uses a library resource, it gains the value of the library without having to implement it itself. Libraries encourage software reuse in a modular fashion. Libraries can use other libraries resulting in a hierarchy of libraries in a program.

When writing code that uses a library, a programmer only needs to know how to use it – not its the internal details. For example, a program could use a library that abstracts a complicated system call so that the programmer can use the system feature without spending time to learn the intricacies of the system function.

History

The idea of a computer library dates back to the first computers created by Charles Babbage. An 1888 paper on his Analytical Engine suggested that computer operations could be punched on separate cards from numerical input. If these operation punch cards were saved for reuse then "by degrees the engine would have a library of its own."[1]

A woman working next to a filing cabinet containing the subroutine library on reels of punched tape for the EDSAC computer.

In 1947 Goldstine and von Neumann speculated that it would be useful to create a "library" of subroutines for their work on the IAS machine, an early computer that was not yet operational at that time.[2] They envisioned a physical library of magnetic wire recordings, with each wire storing reusable computer code.[3]

Inspired by von Neumann, Wilkes and his team constructed EDSAC. A filing cabinet of punched tape held the subroutine library for this computer.[4] Programs for EDSAC consisted of a main program and a sequence of subroutines copied from the subroutine library.[5] In 1951 the team published the first textbook on programming, The Preparation of Programs for an Electronic Digital Computer, which detailed the creation and the purpose of the library.[6]

COBOL included "primitive capabilities for a library system" in 1959,[7] but Jean Sammet described them as "inadequate library facilities" in retrospect.[8]

JOVIAL has a Communication Pool (COMPOOL), roughly a library of header files.

Another major contributor to the modern library concept came in the form of the subprogram innovation of FORTRAN. FORTRAN subprograms can be compiled independently of each other, but the compiler lacked a linker. So prior to the introduction of modules in Fortran-90, type checking between FORTRAN[NB 1] subprograms was impossible.[9]

By the mid 1960s, copy and macro libraries for assemblers were common. Starting with the popularity of the IBM System/360, libraries containing other types of text elements, e.g., system parameters, also became common.

In IBM's OS/360 and its successors this is called a partitioned data set.

The first object-oriented programming language, Simula, developed in 1965, supported adding classes to libraries via its compiler. [10] [11]

Linking

The linking (or binding) process resolves references known as symbols (or links) by searching for them in various locations including configured libraries. If a linker (or binder) does not find a symbol, then it fails, but multiple matches may or may not cause failure.

Static linking describes the process of linking at build-time such that the library executable code is included in the program. Dynamic linking describes the process of linking at run-time and involves building the program with information that supports run-time linking to a dynamic link library (DLL). For dynamic linking, a compatible DLL file must be available to the program at run-time, but for static linking, the program is standalone.

Smart linking describes a feature of a build tool that excludes unused code. For example, a program that only uses integers for arithmetic, or does no arithmetic operations at all, can exclude floating-point library routines. This can lead to smaller program file size and reduced memory usage.

Relocation

Some references in a program or library module are stored in a relative or symbolic form which cannot be resolved until all code and libraries are assigned final static addresses. Relocation is the process of adjusting these references, and is done either by the linker or the loader. In general, relocation cannot be done to individual libraries themselves because the addresses in memory may vary depending on the program using them and other libraries they are combined with. Position-independent code avoids references to absolute addresses and therefore does not require relocation.

Categories

Executable libraries

A library of executable code has a well-defined interface by which the functionality is invoked. For example, in C, a library function is invoked via C's normal function call capability. The linker generates code to call a function via the library mechanism if the function is available from a library instead of from the program itself.[12]

The functions of a library can be connected to the invoking program at different program lifecycle phases. If the code of the library is accessed during the build of the invoking program, then the library is called a static library.[13] An alternative is to build the program executable to be separate from the library file. The library functions are connected after the executable is started, either at load-time or runtime. In this case, the library is called a dynamic library.

Most compiled languages have a standard library, although programmers can also create their own custom libraries. Most modern software systems provide libraries that implement the majority of the system services. Such libraries have organized the services which a modern application requires. As such, most code used by modern applications is provided in these system libraries.

Static libraries

When linking is performed during the creation of an executable or another object file, it is known as static linking or early binding. In this case, the linking is usually done by a linker, but may also be done by the compiler.[14] A static library, also known as an archive, is one intended to be statically linked. Originally, only static libraries existed. Static linking must be performed when any modules are recompiled.

All of the modules required by a program are sometimes statically linked and copied into the executable file. This process, and the resulting stand-alone file, is known as a static build of the program. A static build may not need any further relocation if virtual memory is used and no address space layout randomization is desired.[15]

Shared libraries

A shared library or shared object is a file that is intended to be shared by executable files and further shared object files. Modules used by a program are loaded from individual shared objects into memory at load time or runtime, rather than being copied by a linker when it creates a single monolithic executable file for the program.

Shared libraries can be statically linked during compile-time, meaning that references to the library modules are resolved and the modules are allocated memory when the executable file is created.[citation needed] But often linking of shared libraries is postponed until they are loaded.[dubiousdiscuss]

Object libraries

Although originally pioneered in the 1960s, dynamic linking did not reach the most commonly-used operating systems until the late 1980s. It was generally available in some form in most operating systems by the early 1990s. During this same period, object-oriented programming (OOP) was becoming a significant part of the programming landscape. OOP with runtime binding requires additional information that traditional libraries do not supply. In addition to the names and entry points of the code located within, they also require a list of the objects they depend on. This is a side-effect of one of OOP's core concepts, inheritance, which means that parts of the complete definition of any method may be in different places. This is more than simply listing that one library requires the services of another: in a true OOP system, the libraries themselves may not be known at compile time, and vary from system to system.

At the same time many developers worked on the idea of multi-tier programs, in which a "display" running on a desktop computer would use the services of a mainframe or minicomputer for data storage or processing. For instance, a program on a GUI-based computer would send messages to a minicomputer to return small samples of a huge dataset for display. Remote procedure calls (RPC) already handled these tasks, but there was no standard RPC system.

Soon the majority of the minicomputer and mainframe vendors instigated projects to combine the two, producing an OOP library format that could be used anywhere. Such systems were known as object libraries, or distributed objects, if they supported remote access (not all did). Microsoft's COM is an example of such a system for local use. DCOM, a modified version of COM, supports remote access.

For some time object libraries held the status of the "next big thing" in the programming world. There were a number of efforts to create systems that would run across platforms, and companies competed to try to get developers locked into their own system. Examples include IBM's System Object Model (SOM/DSOM), Sun Microsystems' Distributed Objects Everywhere (DOE), NeXT's Portable Distributed Objects (PDO), Digital's ObjectBroker, Microsoft's Component Object Model (COM/DCOM), and any number of CORBA-based systems.

Class libraries

Class libraries are the rough OOP equivalent of older types of code libraries. They contain classes, which describe characteristics and define actions (methods) that involve objects. Class libraries are used to create instances, or objects with their characteristics set to specific values. In some OOP languages, like Java, the distinction is clear, with the classes often contained in library files (like Java's JAR file format) and the instantiated objects residing only in memory (although potentially able to be made persistent in separate files). In others, like Smalltalk, the class libraries are merely the starting point for a system image that includes the entire state of the environment, classes and all instantiated objects.

Today most class libraries are stored in a package repository (such as Maven Central for Java). Client code explicitly declare the dependencies to external libraries in build configuration files (such as a Maven Pom in Java).

Remote libraries

Another library technique uses completely separate executables (often in some lightweight form) and calls them using a remote procedure call (RPC) over a network to another computer. This maximizes operating system re-use: the code needed to support the library is the same code being used to provide application support and security for every other program. Additionally, such systems do not require the library to exist on the same machine, but can forward the requests over the network.

However, such an approach means that every library call requires a considerable amount of overhead. RPC calls are much more expensive than calling a shared library that has already been loaded on the same machine. This approach is commonly used in a distributed architecture that makes heavy use of such remote calls, notably client-server systems and application servers such as Enterprise JavaBeans.

Code generation libraries

Code generation libraries are high-level APIs that can generate or transform byte code for Java. They are used by aspect-oriented programming, some data access frameworks, and for testing to generate dynamic proxy objects. They also are used to intercept field access.[16]

File naming

Unix-like

On most modern Unix-like systems, library files are stored in directories such as /lib, /usr/lib and /usr/local/lib. A filename typically starts with lib, and ends with .a for a static library (archive) or .so for a shared object (dynamically linked library). For example, libfoo.a and libfoo.so.

Often, symbolic link files are used to manage versioning of a library by providing a link file named without a version that links to a file named with a version. For example, libfoo.so.2 might be version 2 of library foo and a link file named libfoo.so provides a version independent name to that file that programs link to. The link file could be changed to a refer to a version 3 (libfoo.so.3) such that consuming programs will then use version 3 without having to change the program.

Files with extension .la are libtool archives; not usable by the system.

macOS

The macOS system inherits static library conventions from BSD, with the library stored in a .a file. It uses either .so or .dylib for dynamic libraries. Most libraries in macOS, however, consist of "frameworks", placed inside special directories called "bundles" which wrap the library's required files and metadata. For example, a framework called Abc would be implemented in a bundle called Abc.framework, with Abc.framework/Abc being either the dynamically linked library file or a symlink to the dynamically linked library file in Abc.framework/Versions/Current/Abc.

Windows

Often, a Windows dynamic-link library (DLL) has the file extension .dll,[17] although sometimes different extensions are used to indicate general content, e.g. .ocx for a OLE library.

A .lib file can be either a static library or contain the information needed to build an application that consumes the associated DLL. In the latter case, the associated DLL file must be present at runtime.

See also

Notes

  1. ^ It was possible earlier between, e.g., Ada subprograms.

References

  1. ^ Babbage, H. P. (1888-09-12). "The Analytical Engine". Proceedings of the British Association. Bath.
  2. ^ Goldstine, Herman H. (2008-12-31). The Computer from Pascal to von Neumann. Princeton: Princeton University Press. doi:10.1515/9781400820139. ISBN 978-1-4008-2013-9.
  3. ^ Goldstine, Herman; von Neumann, John (1947). Planning and coding of problems for an electronic computing instrument (Report). Institute for Advanced Study. pp. 3, 21–22. OCLC 26239859. it will probably be very important to develop an extensive "library" of subroutines
  4. ^ Wilkes, M. V. (1951). "The EDSAC Computer". 1951 International Workshop on Managing Requirements Knowledge. 1951 International Workshop on Managing Requirements Knowledge. IEEE. p. 79. doi:10.1109/afips.1951.13.
  5. ^ Campbell-Kelly, Martin (September 2011). "In Praise of 'Wilkes, Wheeler, and Gill'". Communications of the ACM. 54 (9): 25–27. doi:10.1145/1995376.1995386. S2CID 20261972.
  6. ^ Wilkes, Maurice; Wheeler, David; Gill, Stanley (1951). The Preparation of Programs for an Electronic Digital Computer. Addison-Wesley. pp. 45, 80–91, 100. OCLC 641145988.
  7. ^ Wexelblat, Richard (1981). History of Programming Languages. ACM Monograph Series. New York, NY: Academic Press (A subsidiary of Harcourt Brace). p. 274. ISBN 0-12-745040-8.
  8. ^ Wexelblat, op. cit., p. 258
  9. ^ Wilson, Leslie B.; Clark, Robert G. (1988). Comparative Programming Languages. Wokingham, England: Addison-Wesley. p. 126. ISBN 0-201-18483-4.
  10. ^ Wilson and Clark, op. cit., p. 52
  11. ^ Wexelblat, op. cit., p. 716
  12. ^ Deshpande, Prasad (2013). Metamorphic Detection Using Function Call Graph Analysis (Thesis). San Jose State University Library. doi:10.31979/etd.t9xm-ahsc.
  13. ^ "Static Libraries". TLDP. Archived from the original on 2013-07-03. Retrieved 2013-10-03.
  14. ^ Kaminsky, Dan (2008). "Chapter 3 - Portable Executable and Executable and Linking Formats". Reverse Engineering Code with IDA Pro. Elsevier. pp. 37–66. doi:10.1016/b978-1-59749-237-9.00003-x. ISBN 978-1-59749-237-9. Retrieved 2021-05-27.
  15. ^ Collberg, Christian; Hartman, John H.; Babu, Sridivya; Udupa, Sharath K. (2003). SLINKY: Static Linking Reloaded. USENIX '05. Department of Computer Science, University of Arizona. Archived from the original on 2016-03-23. Retrieved 2016-03-17.
  16. ^ "Code Generation Library". Source Forge. Archived from the original on 2010-01-12. Retrieved 2010-03-03. Byte Code Generation Library is high level API to generate and transform JAVA byte code. It is used by AOP, testing, data access frameworks to generate dynamic proxy objects and intercept field access.
  17. ^ Bresnahan, Christine; Blum, Richard (2015-04-27). LPIC-1 Linux Professional Institute Certification Study Guide: Exam 101-400 and Exam 102-400. John Wiley & Sons (published 2015). p. 82. ISBN 9781119021186. Archived from the original on 2015-09-24. Retrieved 2015-09-03. Linux shared libraries are similar to the dynamic link libraries (DLLs) of Windows. Windows DLLs are usually identified by .dll filename extensions.

Further reading