Jump to content

Automorphic function

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Rod57 (talk | contribs) at 12:12, 30 January 2025 (Examples: {{annotated link|). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group.

Factor of automorphy

[edit]

In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group acts on a complex-analytic manifold . Then, also acts on the space of holomorphic functions from to the complex numbers. A function is termed an automorphic form if the following holds:

where is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of .

The factor of automorphy for the automorphic form is the function . An automorphic function is an automorphic form for which is the identity.

Some facts about factors of automorphy:

  • Every factor of automorphy is a cocycle for the action of on the multiplicative group of everywhere nonzero holomorphic functions.
  • The factor of automorphy is a coboundary if and only if it arises from an everywhere nonzero automorphic form.
  • For a given factor of automorphy, the space of automorphic forms is a vector space.
  • The pointwise product of two automorphic forms is an automorphic form corresponding to the product of the corresponding factors of automorphy.

Relation between factors of automorphy and other notions:

  • Let be a lattice in a Lie group . Then, a factor of automorphy for corresponds to a line bundle on the quotient group . Further, the automorphic forms for a given factor of automorphy correspond to sections of the corresponding line bundle.

The specific case of a subgroup of SL(2, R), acting on the upper half-plane, is treated in the article on automorphic factors.

Examples

[edit]
  • Kleinian group – Discrete group of Möbius transformations
  • Elliptic modular function – Modular function in mathematics
  • Modular function – Analytic function on the upper half-plane with a certain behavior under the modular group
  • Complex torus

References

[edit]