Machine unlearning
Appearance
Machine unlearning is a branch of machine learning focused on removing specific undesired element, such as private data, outdated information, copyrighted material, harmful content, dangerous abilities, or misinformation, without needing to rebuild models from the ground up.
History
Early research efforts were largely motivated by Article 17 of the GDPR, the European Union's privacy regulation commonly known as the "right to be forgotten" (RTBF), introduced in 2014. RTBF was not designed with machine learning in mind. In 2014, policymakers couldn’t foresee the complexity of deep learning’s data-computation mix, making data erasure challenging. This challenge later spurred research into “data deletion” and “machine unlearning.”
References
This article needs additional or more specific categories. (December 2024) |