Jump to content

Bernstein's theorem (polynomials)

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Ergur (talk | contribs) at 09:22, 5 December 2024 (Removing the proof, see talk). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, Bernstein's theorem is an inequality relating the maximum modulus of a complex polynomial function on the unit disk with the maximum modulus of its derivative on the unit disk. It was proven by Sergei Bernstein while he was working on approximation theory.[1]

Statement

Let denote the maximum modulus of an arbitrary function on , and let denote its derivative. Then for every polynomial of degree we have

.

The inequality cannot be improved and equality holds if and only if . [2]

Bernstein's inequality

In mathematical analysis, Bernstein's inequality states that on the complex plane, within the disk of radius 1, the degree of a polynomial times the maximum value of a polynomial is an upper bound for the similar maximum of its derivative. Applying the theorem k times yields

Similar results

Paul Erdős conjectured that if has no zeros in , then . This was proved by Peter Lax.[3]

M. A. Malik showed that if has no zeros in for a given , then .[4]

See also

References

  1. ^ R. P. Boas, Jr., Inequalities for the derivatives of polynomials, Math. Mag. 42 (1969), 165–174.
  2. ^ M. A. Malik, M. C. Vong, Inequalities concerning the derivative of polynomials, Rend. Circ. Mat. Palermo (2) 34 (1985), 422–426.
  3. ^ P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513.
  4. ^ M. A. Malik, On the derivative of a polynomial J. London Math. Soc (2) 1 (1969), 57–60.

Further reading

  • Frappier, Clément (2004). "Note on Bernstein's inequality for the third derivative of a polynomial" (PDF). J. Inequal. Pure Appl. Math. 5 (1). Paper No. 7. ISSN 1443-5756. Zbl 1060.30003.
  • Natanson, I.P. (1964). Constructive function theory. Volume I: Uniform approximation. Translated by Alexis N. Obolensky. New York: Frederick Ungar. MR 0196340. Zbl 0133.31101.
  • Rahman, Q. I.; Schmeisser, G. (2002). Analytic theory of polynomials. London Mathematical Society Monographs. New Series. Vol. 26. Oxford: Oxford University Press. ISBN 0-19-853493-0. Zbl 1072.30006.