Ultrasonic atomization
This article, Ultrasonic atomization, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |
Ultrasonic atomization is a process in witch a liquid, in contact with a surface vibrating at ultrasonic frequencies, forms standing capillary waves that lead to the ejection of fine droplets. As the amplitude of these waves increases, the wave crests can reach a critical height where the cohesive forces of the liquid are overcome by the surface tension, leading to the ejection of small droplets from the wave tips.
History
The phenomenon of ultrasonic atomization was first reported by Wood and Loomis in 1927[1]. They observed that a fine mist was produced from the liquid surface when a liquid layer was subjected to high-frequency sound waves.
In 1965, Pohlman and Stamm published a book entitled "Untersuchung zum Mechanismus der Ultraschallvernebelung an Flüssigkeitsoberflächen im Hinblick auf technische Anwendungen"[2], which marked a contribution to the field of ultrasonic atomization by identifying and describing the parameters influencing the process such as viscosity, capillary wavelength, surface tension, amplitude and more. One of the key chapters in the book, titled "5.1 Vernebelung geschmolzener Metalle," detailed the first experiments on the high temperature ultrasonic atomization in which molten metals were used. hey discussed its potential technical applications as well as limitations stating that the transition from successful laboratory experiments to a usable technical plant has not yet been found due to issues with conciliation wettability and sonotrode durability. They were able to atomize lead at 350 °C and showcased the damage to the sonotrode induced by cavitation. In 1967, Lierke and Grießhammer published their work in which they were able to ultrasonically atomize metal with melting points up to 700 °C[3].
In 2017 Żrodowski received a Ministry of Science and Higher Education grant named “Diamentowy grant[4]” during which he studied laser powder bed fusion of bulk metallic glasses[5]. This has resulted in the development of ultrasonic atomization of metals for additive manufacturing[6] at Warsaw University of Technology and establishing the spin-off company “Amazemet Sp. z o.o.[7]”. In 2024 a joint article lead by Dmitry Eskin and Iakovos Tzanakis in which new insights into the mechanism of ultrasonic atomization were described stating that the cavitation during the process plays a critical role in the ultrasonic atomization which was also filmed for the first time using high-speed imaging[8].
Applications
Ultrasonic atomization is observed in applications ranging from consumer products like air humidifiers, ultrasonic toothbrushes, medical like nebulizers[9], microencapsulation[10] to industrial uses, such as ultrasonic nozzles for spray drying and the production of metal powders for additive manufacturing and even analytical usage as plasma–mass spectrometry (inductively coupled plasma mass spectrometry[11]).
Studied materials
List of materials that have been successfully atomized using ultrasonic atomization:
- water[12]
- ethanol - water mixtures[13]
- rice wine[14]
- Wood's metal[2]
- zinc alloy[15]
- magnesium alloy[16]
- zirconium alloy[6]
- titanium alloy[17]
- high-entropy alloy[18]
See also
References
- ^ Wood, R.W.; Loomis, Alfred L. (1927-09). "XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4 (22): 417–436. doi:10.1080/14786440908564348. ISSN 1941-5982.
{{cite journal}}
: Check date values in:|date=
(help) - ^ a b Untersuchung zum Mechanismus der Ultraschallvernebelung an Flüssigkeitsoberflächen im Hinblick auf technische Anwendungen. doi:10.1007/978-3-663-07399-4.
- ^ Lierke, E. G.; Grießhammer, G. (1967-10-01). "The formation of metal powders by ultrasonic atomization of molten metals". Ultrasonics. 5 (4): 224–228. doi:10.1016/0041-624X(67)90066-2. ISSN 0041-624X.
- ^ "Diamentowe Granty dla studentów Politechniki Warszawskiej / Studenci Doktoranci Absolwenci / Biuletyn PW - Biuletyn PW". excellence.pw.edu.pl. Retrieved 2024-11-03.
- ^ Żrodowski, Łukasz; Wróblewski, Rafał; Leonowicz, Marcin; Morończyk, Bartosz; Choma, Tomasz; Ciftci, Jakub; Święszkowski, Wojciech; Dobkowska, Anna; Ura-Bińczyk, Ewa; Błyskun, Piotr; Jaroszewicz, Jakub; Krawczyńska, Agnieszka; Kulikowski, Krzysztof; Wysocki, Bartłomiej; Cetner, Tomasz (2023-08-25). "How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ composites". Additive Manufacturing. 76: 103775. doi:10.1016/j.addma.2023.103775. ISSN 2214-8604.
- ^ a b Żrodowski, Łukasz; Wróblewski, Rafał; Choma, Tomasz; Morończyk, Bartosz; Ostrysz, Mateusz; Leonowicz, Marcin; Łacisz, Wojciech; Błyskun, Piotr; Wróbel, Jan S.; Cieślak, Grzegorz; Wysocki, Bartłomiej; Żrodowski, Cezary; Pomian, Karolina (2021-01). "Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing". Materials. 14 (10): 2541. doi:10.3390/ma14102541. ISSN 1996-1944. PMC 8153640. PMID 34068424.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ "Spin-OFF of Warsaw University of Technology - Amazemet".
- ^ Priyadarshi, Abhinav; Bin Shahrani, Shazamin; Choma, Tomasz; Zrodowski, Lukasz; Qin, Ling; Leung, Chu Lun Alex; Clark, Samuel J.; Fezzaa, Kamel; Mi, Jiawei; Lee, Peter D.; Eskin, Dmitry; Tzanakis, Iakovos (2024-03-05). "New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing". Additive Manufacturing. 83: 104033. doi:10.1016/j.addma.2024.104033. ISSN 2214-8604.
- ^ Daradmare, Sneha; Lee, Hag Sung; Seo, Tae Seok; Park, Bum Jun (2022-12-01). "A surfactant-free approach: Novel one-step ultrasonic nebulizer spray method to generate amphiphilic Janus particles". Journal of Colloid and Interface Science. 627: 375–384. doi:10.1016/j.jcis.2022.07.055. ISSN 0021-9797.
- ^ Dalmoro, Annalisa; Barba, Anna Angela; Lamberti, Gaetano; d’Amore, Matteo (2012-04). "Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach". European Journal of Pharmaceutics and Biopharmaceutics. 80 (3): 471–477. doi:10.1016/j.ejpb.2012.01.006.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Gogate, P. R. (2015-01-01), Gallego-Juárez, Juan A.; Graff, Karl F. (eds.), "30 - The use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing", Power Ultrasonics, Oxford: Woodhead Publishing, pp. 911–935, doi:10.1016/b978-1-78242-028-6.00030-2, ISBN 978-1-78242-028-6, retrieved 2024-11-03
- ^ Kobara, Hitomi; Tamiya, Makiko; Wakisaka, Akihiro; Fukazu, Tetsuo; Matsuura, Kazuo (2010-03). "Relationship between the size of mist droplets and ethanol condensation efficiency at ultrasonic atomization on ethanol–water mixtures". AIChE Journal. 56 (3): 810–814. doi:10.1002/aic.12008. ISSN 0001-1541.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Nii, Susumu (2016), "Ultrasonic Atomization", Handbook of Ultrasonics and Sonochemistry, Singapore: Springer, pp. 239–257, doi:10.1007/978-981-287-278-4_7, ISBN 978-981-287-278-4, retrieved 2024-11-03
- ^ Nii, Susumu (2016), "Ultrasonic Atomization", Handbook of Ultrasonics and Sonochemistry, Singapore: Springer, pp. 239–257, doi:10.1007/978-981-287-278-4_7, ISBN 978-981-287-278-4, retrieved 2024-11-03
- ^ Sheikhaliev, Sh. M.; Popel', S. I. (1983-10-01). "Production of metal powders by ultrasonic atomization of melts". Soviet Powder Metallurgy and Metal Ceramics. 22 (10): 793–798. doi:10.1007/BF00790857. ISSN 1573-9066.
- ^ Dobkowska, Anna; Żrodowski, Łukasz; Chlewicka, Monika; Koralnik, Milena; Adamczyk-Cieślak, Bogusława; Ciftci, Jakub; Morończyk, Bartosz; Kruszewski, Mirosław; Jaroszewicz, Jakub; Kuc, Dariusz; Święszkowski, Wojciech; Mizera, Jarosław (2022-12-01). "A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sintering". Journal of Magnesium and Alloys. 10 (12): 3553–3564. doi:10.1016/j.jma.2022.06.003. ISSN 2213-9567.
- ^ Schönrath, Hanna; Wegner, Jan; Frey, Maximilian; Schroer, Martin A.; Jin, Xueze; Pérez-Prado, María Teresa; Busch, Ralf; Kleszczynski, Stefan (2024-06-01). "Novel titanium-based sulfur-containing BMG for PBF-LB/M". Progress in Additive Manufacturing. 9 (3): 601–612. doi:10.1007/s40964-024-00668-z. ISSN 2363-9520.
- ^ Zavdoveev, Anatoliy; Zrodowski, Łukasz; Vedel, Dmytro; Cortes, Pedro; Choma, Tomasz; Ostrysz, Mateusz; Stasiuk, Oleksandr; Baudin, Thierry; Klapatyuk, Andrey; Gaivoronskiy, Aleksandr; Bevz, Vitaliy; Pashinska, Elena; Skoryk, Mykola (2024-05-15). "Atomization of the Fe-rich MnNiCoCr high-entropy alloy for spherical powder production". Materials Letters. 363: 136240. doi:10.1016/j.matlet.2024.136240. ISSN 0167-577X.