k shortest path routing
The k shortest path routing problem is a generalization of the shortest path routing problem in a given network. It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path).
Finding k shortest paths is possible by extending Dijkstra's algorithm or the Bellman-Ford algorithm.[citation needed]
History
Since 1957, many papers have been published on the k shortest path routing problem. Most of the fundamental works were done between 1960s and 2001. Since then, most of the research has been on the problem's applications and its variants. In 2010, Michael Günther et al. published a book on Symbolic calculation of k-shortest paths and related measures with the stochastic process algebra tool CASPA.[1]
Dijkstra's algorithm
Dijkstra's algorithm can be generalized to find the k shortest paths.[citation needed]
Definitions:
Algorithm:
|
Yen's algorithm
Yen's algorithm[2][3] is the most popular method to find single-source k shortest loopless paths for a graph with non-negative edge cost, it requires only 2n2 additions and n2 comparison, fewer than other available shortest path algorithms need. The running time complexity is pseudo-polynomial, being O(kn(m + n log n)) (where m and n represent the number of edges and vertices, respectively).[2][3] In 2007, John Hershberger and Subhash Suri proposed a replacement paths algorithm, a more efficient implementation of Lawler's [4] and Yen's algorithm with O(n) improvement in time for a large number of graphs, but not all of them (therefore not changing the asymptotic bound of Yen's algorithm).[5]
There is a paltry variation for finding k shortest paths with loops. However, there is little demand for finding k shortest paths to have repeated vertices (loops).
Some examples and description
Example 1
The following example makes use of Yen’s model to find k shortest paths between communicating end nodes. That is, it finds a shortest path, second shortest path, etc. up to the Kth shortest path. More details can be found here. The code provided in this example attempts to solve the k shortest path routing problem for a 15-nodes network containing a combination of unidirectional and bidirectional links:

Example 2
Another example is the use of k shortest paths algorithm to track multiple objects. The technique implements a multiple object tracker based on the k shortest paths routing algorithm. A set of probabilistic occupancy maps is used as input. An object detector provides the input.
The complete details can be found at "Computer Vision Laboratory – CVLAB".
Example 3
Another use of k shortest paths algorithms is to design a transit network that enhances passengers' experience in public transportation systems. Such an example of a transit network can be constructed by putting traveling time under consideration. In addition to traveling time, other conditions may be taken depending upon economical and geographical limitations. Despite variations in parameters, the k shortest path algorithms finds the most optimal solutions that satisfies almost all user needs. Such applications of k shortest path algorithms are becoming common, recently Xu, He, Song, and Chaudry (2012) studied the k shortest path problems in transit network systems.[6]
Applications
The k shortest path routing is a good alternative for:
- Geographic path planning
- Network routing, especially in optical mesh network where there are additional constraints that cannot be solved by using ordinary shortest path algorithms.
- Hypothesis generation in computational linguistics
- Sequence alignment and metabolic pathway finding in bioinformatics
- Multiple object tracking as described above
- Road Networks: road junctions are the nodes (vertices) and each edge (link) of the graph is associated with a road segment between two junctions.
Related problems
- The breadth-first search algorithm is used when the search is only limited to two operations.
- The Floyd–Warshall algorithm solves all pairs shortest paths.
- Johnson's algorithm solves all pairs' shortest paths, and may be faster than Floyd–Warshall on sparse graphs.
- Perturbation theory finds (at worst) the locally shortest path.
Cherkassky et al.[7] provide more algorithms and associated evaluations.
See also
Notes
- ^ Günther, Michael; Schuster, Johann; Siegle, Markus (2010-04-27). "Symbolic calculation of k-shortest paths and related measures with the stochastic process algebra tool CASPA". Symbolic calculation of k-shortest paths and related measures with the stochastic process algebra tool CASPA. ACM. pp. 13–18. doi:10.1145/1772630.1772635. ISBN 978-1-60558-916-9.
- ^ a b Cite error: The named reference
Yen
was invoked but never defined (see the help page). - ^ a b Cite error: The named reference
Bouillet
was invoked but never defined (see the help page). - ^ Lawler, Eugene L. (1972-03-01). "A Procedure for Computing the K Best Solutions to Discrete Optimization Problems and Its Application to the Shortest Path Problem". Management Science. 18 (7): 401–405. doi:10.1287/mnsc.18.7.401. ISSN 0025-1909.
- ^ Hershberger, John; Maxel, Matthew; Suri, Subhash (2007). "Finding the k Shortest Simple Paths: A New Algorithm and its Implementation" (PDF). ACM Transactions on Algorithms. 3 (4). Article 45 (19 pages). doi:10.1145/1290672.1290682. S2CID 10703503.
- ^ Xu, Wangtu; He, Shiwei; Song, Rui; Chaudhry, Sohail S. (2012). "Finding the k shortest paths in a schedule-based transit network". Computers & Operations Research. 39 (8): 1812–1826. doi:10.1016/j.cor.2010.02.005. S2CID 29232689.
- ^ Cherkassky, Boris V.; Goldberg, Andrew V.; Radzik, Tomasz (1996). "Shortest paths algorithms: Theory and experimental evaluation". Mathematical Programming. 73 (2): 129–174. doi:10.1007/BF02592101. ISSN 0025-5610. S2CID 414427.
External links
- Implementation of Yen's algorithm
- Implementation of Yen's and fastest k shortest simple paths algorithms
- http://www.technical-recipes.com/2012/the-k-shortest-paths-algorithm-in-c/#more-2432
- Multiple objects tracking technique using K-shortest path algorithm: http://cvlab.epfl.ch/software/ksp/
- Computer Vision Laboratory: http://cvlab.epfl.ch/software/ksp/