Jump to content

Overlapping subproblems

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by WikiLinuz (talk | contribs) at 17:04, 11 September 2024 (simplify; use py; ce;). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In computer science, a problem is said to have overlapping subproblems if the problem can be broken down into subproblems which are reused several times or a recursive algorithm for the problem solves the same subproblem over and over rather than always generating new subproblems.[1][2] [3]

For example, the problem of computing the Fibonacci sequence exhibits overlapping subproblems. The problem of computing the nth Fibonacci number F(n), can be broken down into the subproblems of computing F(n − 1) and F(n − 2), and then adding the two. The subproblem of computing F(n − 1) can itself be broken down into a subproblem that involves computing F(n − 2). Therefore, the computation of F(n − 2) is reused, and the Fibonacci sequence thus exhibits overlapping subproblems.

A naive recursive approach to such a problem generally fails due to an exponential complexity. If the problem also shares an optimal substructure property, dynamic programming is a good way to work it out.

Fibonacci sequence example

In the following two implementations for calculating fibonacci sequence, fibonacci uses regular recursion and fibonacci_mem uses memoization. fibonacci_mem is much more efficient as the value for any particular n is computed only once.

def fibonacci(n):
    if n <= 1:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

def fibonacci_mem(n, cache):
    if n <= 1:
        return n
    if n in cache:
        return cache[n]
    cache[n] = fibonacci_mem(n-1, cache) + fibonacci_mem(n-2, cache)
    return cache[n]

print(fibonacci_mem(5, {})) # 5
print(fibonacci(5)) # 5

When executed, the fibonacci function computes the value of some of the numbers in the sequence many times over, following a pattern which can be visualized by this diagram:

f(5) = f(4) + f(3) = 5
       |      |
       |      f(3) = f(2) + f(1) = 2
       |             |      |
       |             |      f(1) = 1
       |             |
       |             f(2) = 1
       |
       f(4) = f(3) + f(2) = 3
              |      |
              |      f(2) = 1
              |
              f(3) = f(2) + f(1) = 2
                     |      |
                     |      f(1) = 1
                     |
                     f(2) = 1

The fibonacci_mem computation results in a pattern which can be visualized by this diagram:

f(5) = f(4) + f(3) = 5
       |      |
       f(4) = f(3) + f(2) = 3
              |      |
              f(3) = f(2) + f(1) = 2
                     |      |
                     |      f(1) = 1
                     |
                     f(2) = 1

The difference may not seem too significant with an n of 5, but as its value increases, the complexity of the original fibonacci function increases exponentially, whereas fibonacci_mem version increases more linearly.

See also

References

  1. ^ Introduction to Algorithms, 2nd ed., (Cormen, Leiserson, Rivest, and Stein) 2001, p. 327. ISBN 0-262-03293-7.
  2. ^ Introduction to Algorithms, 3rd ed., (Cormen, Leiserson, Rivest, and Stein) 2014, p. 384. ISBN 9780262033848.
  3. ^ Dynamic Programming: Overlapping Subproblems, Optimal Substructure, MIT Video.