Tetrahedron where all three face angles at one vertex are right angles
A trirectangular tetrahedron can be constructed by a coordinate octant and a plane crossing all 3 axes away from the origin, like: x>0 y>0 z>0 and x/a+y/b+z/c<1
In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles. That vertex is called the right angle of the trirectangular tetrahedron and the face opposite it is called the base. The three edges that meet at the right angle are called the legs and the perpendicular from the right angle to the base is called the altitude of the tetrahedron.
Only the bifurcating graph of the Affine Coxeter group has a Trirectangular tetrahedron fundamental domain.
Metric formulas
If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume
The area of the base (a,b,c) is always (Gua) an irrational number. Thus a trirectangular tetrahedron with integer edges is never a perfect body. The trirectangular bipyramid (6 faces, 9 edges, 5 vertices) built from these trirectangular tetrahedrons and the related left-handed ones connected on their bases have rational edges, faces and volume, but the inner space-diagonal between the two trirectangular vertices is still irrational. The later one is the double of the altitude of the trirectangular tetrahedron and a rational part of the (proved)[3] irrational space-diagonal of the related Euler-brick (bc, ca, ab).
Integer edges
Trirectangular tetrahedrons with integer legs and sides of the base triangle exist, e.g. (discovered 1719 by Halcke). Here are a few more examples with integer legs and sides.