Jump to content

Talk:Rabin signature algorithm

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Phlosioneer (talk | contribs) at 05:33, 3 September 2024 (Quadratic Residue d - Notation issue in the source: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This article is not correctly written. The Rabin cryptosystem is the first secure signature scheme in history. Rabin literally invented the use of hash functions for signature security in his signature scheme and all others follow their hash-and-sign paradigm. — Preceding unsigned comment added by 88.254.4.93 (talk) 17:09, 30 December 2020 (UTC)[reply]

Quadratic Residue d - Notation issue in the source

Thank you for your edits and clean up, @Taylor_Riastradh_Campbell. I have a concern about the source you used where my [Clarify] question was. The article currently reads:

 Let . If  is a quadratic nonresidue modulo , the signer starts over...

The source cited for that sentence is Rabin TR-212, page 10. However, on page 10, Rabin does not include that statement. He says:

 By analysis of Section 2, this congruence is solvable if and only if  is a [quadratic residue] mod  and mod .

Rabin's paper is ambiguous on the meaning of here. In Section 2, he uses where is any prime, then later he applies that result to both secret key primes and . To untangle this notation issue, the wikipedia article uses and . Using the wikipedia notation, Rabin's statement now reads:

 ...if and only if  and  are [quadratic residues] mod  and mod , respectively.

It's not clear to me whether that statement with clarified notation is equivalent to the one on the current wikipedia article, in the first quote. Phlosioneer (talk) 05:33, 3 September 2024 (UTC)[reply]