Closed graph theorem (functional analysis)
In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of the operator is closed (see also closed graph property).
The closed graph theorem has extensive application throughout functional analysis, because it can control whether a partially-defined linear operator admits continuous extensions. For this reason, it has been generalized to many circumstances beyond the elementary formulation above.
Explanation
Let be a linear operator between Banach spaces (or more generally Fréchet spaces). Then the continuity of means that for each convergent sequence . On the other hand, the closedness of the graph of means that for each convergent sequence such that , then . Hence, the closed graph theorem says that in order to check the continuity of , one needs to show under the additional assumption that is convergent.
Statement
Between Banach spaces
Closed Graph Theorem for Banach spaces—If is an everywhere-defined linear operator between Banach spaces, then the following are equivalent:
- is continuous.
- is closed (that is, the graph of is closed in the product topology on
- If in then in
- If in then in
- If in and if converges in to some then
- If in and if converges in to some then
The operator is required to be everywhere-defined, that is, the domain of is This condition is necessary, as there exist closed linear operators that are unbounded (not continuous); a prototypical example is provided by the derivative operator on whose domain is a strict subset of
The usual proof of the closed graph theorem employs the open mapping theorem. In fact, the closed graph theorem, the open mapping theorem and the bounded inverse theorem are all equivalent.[clarification needed] This equivalence also serves to demonstrate the importance of and being Banach; one can construct linear maps that have unbounded inverses in this setting, for example, by using either continuous functions with compact support or by using sequences with finitely many non-zero terms along with the supremum norm.
Complete metrizable codomain
The closed graph theorem can be generalized from Banach spaces to more abstract topological vector spaces in the following ways.
Theorem—A linear operator from a barrelled space to a Fréchet space is continuous if and only if its graph is closed.
Between F-spaces
There are versions that does not require to be locally convex.
This theorem is restated and extend it with some conditions that can be used to determine if a graph is closed:
Theorem—If is a linear map between two F-spaces, then the following are equivalent:
- is continuous.
- has a closed graph.
- If in and if converges in to some then [3]
- If in and if converges in to some then
Complete pseudometrizable codomain
Every metrizable topological space is pseudometrizable. A pseudometrizable space is metrizable if and only if it is Hausdorff.
Closed Graph Theorem[4]—Also, a closed linear map from a locally convex ultrabarrelled space into a complete pseudometrizable TVS is continuous.
Closed Graph Theorem—A closed and bounded linear map from a locally convex infrabarreled space into a complete pseudometrizable locally convex space is continuous.[4]
Codomain not complete or (pseudo) metrizable
Theorem[5]—Suppose that is a linear map whose graph is closed. If is an inductive limit of Baire TVSs and is a webbed space then is continuous.
Closed Graph Theorem[4]—A closed surjective linear map from a complete pseudometrizable TVS onto a locally convex ultrabarrelled space is continuous.
An even more general version of the closed graph theorem is
Theorem[6]—Suppose that and are two topological vector spaces (they need not be Hausdorff or locally convex) with the following property:
- If is any closed subspace of and is any continuous map of onto then is an open mapping.
Under this condition, if is a linear map whose graph is closed then is continuous.
Borel graph theorem
The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis.[7] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space. The weak dual of a separable Fréchet space and the strong dual of a separable Fréchet-Montel space are Souslin spaces. Also, the space of distributions and all Lp-spaces over open subsets of Euclidean space as well as many other spaces that occur in analysis are Souslin spaces. The Borel graph theorem states:
Borel Graph Theorem—Let be linear map between two locally convex Hausdorff spaces and If is the inductive limit of an arbitrary family of Banach spaces, if is a Souslin space, and if the graph of is a Borel set in then is continuous.[7]
An improvement upon this theorem, proved by A. Martineau, uses K-analytic spaces.
A topological space is called a if it is the countable intersection of countable unions of compact sets.
A Hausdorff topological space is called K-analytic if it is the continuous image of a space (that is, if there is a space and a continuous map of onto ).
Every compact set is K-analytic so that there are non-separable K-analytic spaces. Also, every Polish, Souslin, and reflexive Fréchet space is K-analytic as is the weak dual of a Frechet space. The generalized Borel graph theorem states:
Generalized Borel Graph Theorem[8]—Let be a linear map between two locally convex Hausdorff spaces and If is the inductive limit of an arbitrary family of Banach spaces, if is a K-analytic space, and if the graph of is closed in then is continuous.
Related results
If is closed linear operator from a Hausdorff locally convex TVS into a Hausdorff finite-dimensional TVS then is continuous.[9]
See also
- Almost open linear map – Map that satisfies a condition similar to that of being an open map.
- Barrelled space – Type of topological vector space
- Closed graph – Graph of a map closed in the product space
- Closed linear operator
- Densely defined operator – Function that is defined almost everywhere (mathematics)
- Discontinuous linear map
- Kakutani fixed-point theorem – Fixed-point theorem for set-valued functions
- Open mapping theorem (functional analysis) – Condition for a linear operator to be open
- Ursescu theorem – Generalization of closed graph, open mapping, and uniform boundedness theorem
- Webbed space – Space where open mapping and closed graph theorems hold
References
Notes
- ^ Schaefer & Wolff 1999, p. 78.
- ^ Trèves (2006), p. 173
- ^ Rudin 1991, pp. 50–52.
- ^ a b c Narici & Beckenstein 2011, pp. 474–476.
- ^ Narici & Beckenstein 2011, p. 479-483.
- ^ Trèves 2006, p. 169.
- ^ a b Trèves 2006, p. 549.
- ^ Trèves 2006, pp. 557–558.
- ^ Narici & Beckenstein 2011, p. 476.
Bibliography
- Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
- Banach, Stefan (1932). Théorie des Opérations Linéaires [Theory of Linear Operations] (PDF). Monografie Matematyczne (in French). Vol. 1. Warszawa: Subwencji Funduszu Kultury Narodowej. Zbl 0005.20901. Archived from the original (PDF) on 2014-01-11. Retrieved 2020-07-11.
- Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN 978-0-387-90081-0. OCLC 878109401.
- Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
- Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics. Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
- Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
- Dolecki, Szymon; Mynard, Frédéric (2016). Convergence Foundations Of Topology. New Jersey: World Scientific Publishing Company. ISBN 978-981-4571-52-4. OCLC 945169917.
- Dubinsky, Ed (1979). The Structure of Nuclear Fréchet Spaces. Lecture Notes in Mathematics. Vol. 720. Berlin New York: Springer-Verlag. ISBN 978-3-540-09504-0. OCLC 5126156.
- Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.
- Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
- Kriegl, Andreas; Michor, Peter W. (1997). The Convenient Setting of Global Analysis (PDF). Mathematical Surveys and Monographs. Vol. 53. Providence, R.I: American Mathematical Society. ISBN 978-0-8218-0780-4. OCLC 37141279.
- Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
- "Proof of closed graph theorem". PlanetMath.