Jump to content

Square triangular number

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by David Eppstein (talk | contribs) at 06:04, 28 May 2024 (this involves square roots so the math needs to be latex; remove redundant derivation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Square triangular number 36 depicted as a triangular number and as a square number.

In mathematics, a square triangular number (or triangular square number) is a number which is both a triangular number and a square number. There are infinitely many square triangular numbers; the first few are:

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025 (sequence A001110 in the OEIS)

Explicit formulas

Write for the th square triangular number, and write and for the sides of the corresponding square and triangle, so that

Define the triangular root of a triangular number to be . From this definition and the quadratic formula,

Therefore, is triangular ( is an integer) if and only if is square. Consequently, a square number is also triangular if and only if is square, that is, there are numbers and such that . This is an instance of the Pell equation with . All Pell equations have the trivial solution for any ; this is called the zeroth solution, and indexed as . If denotes the th nontrivial solution to any Pell equation for a particular , it can be shown by the method of descent that the next solution is

Hence there are infinitely many solutions to any Pell equation for which there is one non-trivial one, which is true whenever is not a square. The first non-trivial solution when is easy to find: it is . A solution to the Pell equation for yields a square triangular number and its square and triangular roots as follows:

Hence, the first square triangular number, derived from , is , and the next, derived from , is .

The sequences , and are the OEIS sequences OEISA001110, OEISA001109, and OEISA001108 respectively.

In 1778 Leonhard Euler determined the explicit formula[1][2]: 12–13 

Other equivalent formulas (obtained by expanding this formula) that may be convenient include

The corresponding explicit formulas for and are:[2]: 13 

Recurrence relations

There are recurrence relations for the square triangular numbers, as well as for the sides of the square and triangle involved. We have[3]: (12) 

We have[1][2]: 13 

Other characterizations

All square triangular numbers have the form , where is a convergent to the continued fraction expansion of , the square root of 2.[4]

A. V. Sylwester gave a short proof that there are infinitely many square triangular numbers: If the th triangular number is square, then so is the larger th triangular number, since:

The left hand side of this equation is in the form of a triangular number, and as the product of three squares, the right hand side is square.[5]

The generating function for the square triangular numbers is:[6]

Numerical data

As k becomes larger, the ratio tk/sk approaches 2 ≈ 1.41421356, and the ratio of successive square triangular numbers approaches (1 + 2)4 = 17 + 122 ≈ 33.970562748. The table below shows values of k between 0 and 11, which comprehend all square triangular numbers up to 1016.

k Nk sk tk tk/sk Nk/Nk − 1
0 0 0 0
1 1 1 1 1
2 36 6 8 1.33333333 36
3 1225 35 49 1.4 34.027777778
4 41616 204 288 1.41176471 33.972244898
5 1413721 1189 1681 1.41379310 33.970612265
6 48024900 6930 9800 1.41414141 33.970564206
7 1631432881 40391 57121 1.41420118 33.970562791
8 55420693056 235416 332928 1.41421144 33.970562750
9 1882672131025 1372105 1940449 1.41421320 33.970562749
10 63955431761796 7997214 11309768 1.41421350 33.970562748
11 2172602007770041 46611179 65918161 1.41421355 33.970562748

See also

  • Cannonball problem, on numbers that are simultaneously square and square pyramidal
  • Sixth power, numbers that are simultaneously square and cubical

Notes

  1. ^ a b Dickson, Leonard Eugene (1999) [1920]. History of the Theory of Numbers. Vol. 2. Providence: American Mathematical Society. p. 16. ISBN 978-0-8218-1935-7.
  2. ^ a b c Euler, Leonhard (1813). "Regula facilis problemata Diophantea per numeros integros expedite resolvendi (An easy rule for Diophantine problems which are to be resolved quickly by integral numbers)". Mémoires de l'Académie des Sciences de St.-Pétersbourg (in Latin). 4: 3–17. Retrieved 2009-05-11. According to the records, it was presented to the St. Petersburg Academy on May 4, 1778.
  3. ^ Weisstein, Eric W. "Square Triangular Number". MathWorld.
  4. ^ Ball, W. W. Rouse; Coxeter, H. S. M. (1987). Mathematical Recreations and Essays. New York: Dover Publications. p. 59. ISBN 978-0-486-25357-2.
  5. ^ Pietenpol, J. L.; Sylwester, A. V.; Just, Erwin; Warten, R. M. (February 1962). "Elementary Problems and Solutions: E 1473, Square Triangular Numbers". American Mathematical Monthly. 69 (2). Mathematical Association of America: 168–169. doi:10.2307/2312558. ISSN 0002-9890. JSTOR 2312558.
  6. ^ Plouffe, Simon (August 1992). "1031 Generating Functions" (PDF). University of Quebec, Laboratoire de combinatoire et d'informatique mathématique. p. A.129. Archived from the original (PDF) on 2012-08-20. Retrieved 2009-05-11.