Jump to content

Uniform boundedness conjecture for rational points

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by MarkH21 (talk | contribs) at 03:41, 10 May 2024 (Undid revision 1223085408 by Tinayao0315 (talk) this isn’t repetition because the attribution to Mazur is not mentioned in the article body (conjectures are not always named after the one who posed it), also this is not a minor edit). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In arithmetic geometry, the uniform boundedness conjecture for rational points asserts that for a given number field and a positive integer , there exists a number depending only on and such that for any algebraic curve defined over having genus equal to has at most -rational points. This is a refinement of Faltings's theorem, which asserts that the set of -rational points is necessarily finite.

Progress

The first significant progress towards the conjecture was due to Caporaso, Harris, and Mazur.[1] They proved that the conjecture holds if one assumes the Bombieri–Lang conjecture.

Mazur's conjecture B

A variant of the conjecture, due to Mazur, asserts that there should be a number such that for any algebraic curve defined over having genus and whose Jacobian variety has Mordell–Weil rank over equal to , the number of -rational points of is at most . This variant of the conjecture is known as Mazur's conjecture B.

Michael Stoll proved that Mazur's conjecture B holds for hyperelliptic curves with the additional hypothesis that .[2] Stoll's result was further refined by Katz, Rabinoff, and Zureick-Brown in 2015.[3] Both of these works rely on Chabauty's method.

Mazur's conjecture B was resolved by Dimitrov, Gao, and Habegger in a preprint in 2020 which has since appeared in the Annals of Mathematics using the earlier work of Gao and Habegger on the geometric Bogomolov conjecture instead of Chabauty's method.[4]

References

  1. ^ Caporaso, Lucia; Harris, Joe; Mazur, Barry (1997). "Uniformity of rational points". Journal of the American Mathematical Society. 10 (1): 1–35. doi:10.1090/S0894-0347-97-00195-1.
  2. ^ Stoll, Michael (2019). "Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell–Weil rank". Journal of the European Mathematical Society. 21 (3): 923–956. arXiv:1307.1773. doi:10.4171/JEMS/857.
  3. ^ Katz, Eric; Rabinoff, Joseph; Zureick-Brown, David (2016). "Uniform bounds for the number of rational points on curves of small Mordell–Weil rank". Duke Mathematical Journal. 165 (16): 3189–3240. arXiv:1504.00694. doi:10.1215/00127094-3673558. S2CID 42267487.
  4. ^ Dimitrov, Vessilin; Gao, Ziyang; Habegger, Philipp (2021). "Uniformity in Mordell–Lang for curves" (PDF). Annals of Mathematics. 194: 237–298. doi:10.4007/annals.2021.194.1.4. S2CID 210932420.