Jump to content

Quantum q-Krawtchouk polynomials

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Citation bot (talk | contribs) at 23:16, 1 May 2024 (Added bibcode. | Use this bot. Report bugs. | Suggested by LeapTorchGear | #UCB_webform 484/639). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

[edit]

The polynomials are given in terms of basic hypergeometric functions by

References

[edit]
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, arXiv:math/9602214, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koekoek, Roelof; Swarttouw, René F. (1996), The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, arXiv:math/9602214, Bibcode:1996math......2214K
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18 Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.