This is an old revision of this page, as edited by Nerd271(talk | contribs) at 23:21, 17 March 2024(Changing short description from "Method for calculating pi" to "Method for calculating π"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.Revision as of 23:21, 17 March 2024 by Nerd271(talk | contribs)(Changing short description from "Method for calculating pi" to "Method for calculating π")
In mathematics, Borwein's algorithm is an algorithm devised by Jonathan and Peter Borwein to calculate the value of 1/π. They devised several other algorithms. They published the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity.[1]
Then pk converges quadratically to π; that is, each iteration approximately doubles the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π's final result.
Cubic convergence (1991)
Start by setting
Then iterate
Then ak converges cubically to 1/π; that is, each iteration approximately triples the number of correct digits.
Then ak converges quartically against 1/π; that is, each iteration approximately quadruples the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π's final result.
One iteration of this algorithm is equivalent to two iterations of the Gauss–Legendre algorithm.
A proof of these algorithms can be found here:[6]
Then ak converges quintically to 1/π (that is, each iteration approximately quintuples the number of correct digits), and the following condition holds:
Nonic convergence
Start by setting
Then iterate
Then ak converges nonically to 1/π; that is, each iteration approximately multiplies the number of correct digits by nine.[7]
^Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987. Many of their results are available in: Jorg Arndt, Christoph Haenel, Pi Unleashed, Springer, Berlin, 2001, ISBN3-540-66572-2
^Bailey, David H (2023-04-01). "Peter Borwein: A Visionary Mathematician". Notices of the American Mathematical Society. 70 (04): 610–613. doi:10.1090/noti2675. ISSN0002-9920.