From Wikipedia, the free encyclopedia
One form of the structure theorem for finitely generated modules over a principal ideal domain states that if
R
{\displaystyle R}
is a PID and
M
{\displaystyle M}
a finitely generated
R
{\displaystyle R}
-module, then
M
≅
R
r
⊕
R
/
(
a
1
)
⊕
R
/
(
a
2
)
⊕
⋯
⊕
R
/
(
a
m
)
{\displaystyle M\cong R^{r}\oplus R/(a_{1})\oplus R/(a_{2})\oplus \cdots \oplus R/(a_{m})}
for some
r
∈
Z
0
+
{\displaystyle r\in \mathbb {Z} _{0}^{+}}
and nonzero elements
a
1
,
…
,
a
m
∈
R
{\displaystyle a_{1},\ldots ,a_{m}\in R}
for which
a
1
∣
⋯
∣
a
m
{\displaystyle a_{1}\mid \cdots \mid a_{m}}
. The nonnegative integer
r
{\displaystyle r}
is called the free rank or Betti number of the module
M
{\displaystyle M}
, while
a
1
,
…
,
a
m
{\displaystyle a_{1},\ldots ,a_{m}}
are the invariant factors of
M
{\displaystyle M}
and are unique up to associatedness .