This is an old revision of this page, as edited by GhostInTheMachine(talk | contribs) at 19:24, 27 January 2024(Changing short description from "Calculates 1/π, featured in "Pi and the AGM" book" to "Method for calculating pi"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.Revision as of 19:24, 27 January 2024 by GhostInTheMachine(talk | contribs)(Changing short description from "Calculates 1/π, featured in "Pi and the AGM" book" to "Method for calculating pi")
In mathematics, Borwein's algorithm is an algorithm devised by Jonathan and Peter Borwein to calculate the value of 1/π. They devised several other algorithms. They published the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity.[1]
Then pk converges quadratically to π; that is, each iteration approximately doubles the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π's final result.
Cubic convergence (1991)
Start by setting
Then iterate
Then ak converges cubically to 1/π; that is, each iteration approximately triples the number of correct digits.
Then ak converges quartically against 1/π; that is, each iteration approximately quadruples the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π's final result.
One iteration of this algorithm is equivalent to two iterations of the Gauss–Legendre algorithm.
A proof of these algorithms can be found here:[6]
Then ak converges quintically to 1/π (that is, each iteration approximately quintuples the number of correct digits), and the following condition holds:
Nonic convergence
Start by setting
Then iterate
Then ak converges nonically to 1/π; that is, each iteration approximately multiplies the number of correct digits by nine.[7]
^Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987. Many of their results are available in: Jorg Arndt, Christoph Haenel, Pi Unleashed, Springer, Berlin, 2001, ISBN3-540-66572-2
^Bailey, David H (2023-04-01). "Peter Borwein: A Visionary Mathematician". Notices of the American Mathematical Society. 70 (04): 610–613. doi:10.1090/noti2675. ISSN0002-9920.