Square-root sum problem
The square-root sum problem (SRS) is a computational decision problem from the field of numerical analysis, with applications to computational geometry.
Definitions
SRS is defined as follows:[1]
Given positive integers and an integer t, decide whether .
An alternative definition is:
Given positive integers and , decide whether .
Run-time complexity
SRS can be solved in polynomial time in the Real RAM model.[2] However, its run-time complexity in the Turing machine model is open, as of 1997.[1] The main difficulty is that, in order to solve the problem, the square-roots should be computed to a high accuracy, which may require a large number of bits. The problem is mentioned in the Open Problems Garden.[3]
Blomer[4] presents a polynomial-time Monte Carlo method for deciding whether a sum of square roots equals 0.
Separation bounds
One way to solve SRS is to prove a lower bound on the absolute difference or . Such lower bound is called a "separation bound" since it separates between the difference and 0. For example, if the absolute difference is at least 2-d, it means that we can round all numbers to d bits of accuracy, and solve SRS in time polynomial in d.
This leads to the mathematical problem of proving bounds on this difference. Define r(n,k) as the smallest positive value of the difference , where ai and bi are integers between 1 and n; define R(n,k) is defined as -log r(n,k), which is the number of accuracy digits required to solve SRS. Computing r(n,k) is open problem 33 in the open problem project.[5]
In particular, it is interesting whether r(n,k) is in O(poly(k,log(n)). A positive answer would imply that SRS can be solved in polynomial time in the Turing Machine model. Some currently known bounds are:
- Qian and Wang[6] prove by an explicit construction that, for any k and n, , so . This number is optimal for k=2, and also for a wide range of integers.
- Cheng and Li[7] improved the upper bound on the number of digits: they showed that . This implies an that SRS can be solved in time , as long as n is in o(k log k). They also present an algorithm to compute r(n,k) in time .
- Eisenbrand, Haeberle and Singer[8] prove that , where gamma is a constant that depends on the inputs a1,...,an, and steps from the Subspace theorem. This improves the previous bound .
Importance
SRS is important in computational geometry, as Euclidean distances are given by square-roots, and many geometric problems (e.g. Minimum spanning tree in geometry) require to compute sums of distances.
SRS also has a theoretic importance, as it is a simple special case of a semidefinite programming feasibility problem. Conisder the matrix . This matrix is positive semidefinite iff , iff . Therefore, to solve SRS, we can construct a feasibility problem with n constraints of the form , and additional linear constraints . The resulting SDP is feasible if and only if SRS is feasible. As the runtime complexity of SRS in the Turing machine model is open, the same is true for SDP feasibility (as of 1997).
References
- ^ a b Goemans, Michel X. (1997-10-01). "Semidefinite programming in combinatorial optimization". Mathematical Programming. 79 (1): 143–161. doi:10.1007/BF02614315. ISSN 1436-4646.
- ^ Tiwari, Prasoon (1992-12-01). "A problem that is easier to solve on the unit-cost algebraic RAM". Journal of Complexity. 8 (4): 393–397. doi:10.1016/0885-064X(92)90003-T. ISSN 0885-064X.
- ^ "Complexity of square-root sum | Open Problem Garden". garden.irmacs.sfu.ca. Retrieved 2024-01-01.
- ^ "CSDL | IEEE Computer Society". www.computer.org. Retrieved 2024-01-01.
- ^ Demaine, Erik D. "TOPP: Problem 33: Sum of Square Roots". topp.openproblem.net. Retrieved 2024-01-01.
- ^ Qian, Jianbo; Wang, Cao An (2006-12-16). "How much precision is needed to compare two sums of square roots of integers?". Information Processing Letters. 100 (5): 194–198. doi:10.1016/j.ipl.2006.05.002. ISSN 0020-0190.
- ^ Cheng, Qi; Li, Yu-Hsin (2011-09-09). "On the minimum gap between sums of square roots of small integers". Theoretical Computer Science. 412 (39): 5458–5465. doi:10.1016/j.tcs.2011.06.014. ISSN 0304-3975.
- ^ A bot will complete this citation soon. Click here to jump the queue arXiv:2312.02057.
This article needs additional or more specific categories. (January 2024) |