This is a list of some of the most commonly used coordinate transformations.
 
2-dimensional 
Let 
  
    
      
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle (x,y)} 
   
   be the standard Cartesian coordinates , and 
  
    
      
        ( 
        r 
        , 
        θ 
        ) 
       
     
    {\displaystyle (r,\theta )} 
   
   the standard polar coordinates .
To Cartesian coordinates 
From polar coordinates 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                r 
                cos 
                 
                θ 
               
             
            
              
                y 
               
              
                 
                = 
                r 
                sin 
                 
                θ 
               
             
            
              
                
                  
                    
                      ∂ 
                      ( 
                      x 
                      , 
                      y 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      θ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                
                  
                    [ 
                    
                      
                        
                          cos 
                           
                          θ 
                         
                        
                          − 
                          r 
                          sin 
                           
                          θ 
                         
                       
                      
                        
                          sin 
                           
                          θ 
                         
                        
                          
                            
                              
                                − 
                               
                             
                           
                          r 
                          cos 
                           
                          θ 
                         
                       
                     
                    ] 
                   
                 
               
             
            
              
                
                  Jacobian 
                 
                = 
                det 
                
                  
                    
                      ∂ 
                      ( 
                      x 
                      , 
                      y 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      θ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                r 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&=r\cos \theta \\y&=r\sin \theta \\[5pt]{\frac {\partial (x,y)}{\partial (r,\theta )}}&={\begin{bmatrix}\cos \theta &-r\sin \theta \\\sin \theta &{\phantom {-}}r\cos \theta \end{bmatrix}}\\[5pt]{\text{Jacobian}}=\det {\frac {\partial (x,y)}{\partial (r,\theta )}}&=r\end{aligned}}} 
   
  
From log-polar coordinates 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                
                  e 
                  
                    ρ 
                   
                 
                cos 
                 
                θ 
                , 
               
             
            
              
                y 
               
              
                 
                = 
                
                  e 
                  
                    ρ 
                   
                 
                sin 
                 
                θ 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&=e^{\rho }\cos \theta ,\\y&=e^{\rho }\sin \theta .\end{aligned}}} 
   
  
By using complex numbers 
  
    
      
        ( 
        x 
        , 
        y 
        ) 
        = 
        x 
        + 
        i 
        
          y 
          ′ 
         
       
     
    {\displaystyle (x,y)=x+iy'} 
   
  , the transformation can be written as
  
    
      
        x 
        + 
        i 
        y 
        = 
        
          e 
          
            ρ 
            + 
            i 
            θ 
           
         
       
     
    {\displaystyle x+iy=e^{\rho +i\theta }} 
   
  
That is, it is given by the complex exponential function.
From bipolar coordinates 
 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                a 
                
                  
                    
                      sinh 
                       
                      τ 
                     
                    
                      cosh 
                       
                      τ 
                      − 
                      cos 
                       
                      σ 
                     
                   
                 
               
             
            
              
                y 
               
              
                 
                = 
                a 
                
                  
                    
                      sin 
                       
                      σ 
                     
                    
                      cosh 
                       
                      τ 
                      − 
                      cos 
                       
                      σ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&=a{\frac {\sinh \tau }{\cosh \tau -\cos \sigma }}\\y&=a{\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\end{aligned}}} 
   
  
From 2-center bipolar coordinates 
 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                
                  
                    1 
                    
                      4 
                      c 
                     
                   
                 
                
                  ( 
                  
                    
                      r 
                      
                        1 
                       
                      
                        2 
                       
                     
                    − 
                    
                      r 
                      
                        2 
                       
                      
                        2 
                       
                     
                   
                  ) 
                 
               
             
            
              
                y 
               
              
                 
                = 
                ± 
                
                  
                    1 
                    
                      4 
                      c 
                     
                   
                 
                
                  
                    16 
                    
                      c 
                      
                        2 
                       
                     
                    
                      r 
                      
                        1 
                       
                      
                        2 
                       
                     
                    − 
                    ( 
                    
                      r 
                      
                        1 
                       
                      
                        2 
                       
                     
                    − 
                    
                      r 
                      
                        2 
                       
                      
                        2 
                       
                     
                    + 
                    4 
                    
                      c 
                      
                        2 
                       
                     
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&={\frac {1}{4c}}\left(r_{1}^{2}-r_{2}^{2}\right)\\y&=\pm {\frac {1}{4c}}{\sqrt {16c^{2}r_{1}^{2}-(r_{1}^{2}-r_{2}^{2}+4c^{2})^{2}}}\end{aligned}}} 
   
  
 From Cesàro equation 
 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                ∫ 
                cos 
                 
                
                  [ 
                  
                    ∫ 
                    κ 
                    ( 
                    s 
                    ) 
                     
                    d 
                    s 
                   
                  ] 
                 
                d 
                s 
               
             
            
              
                y 
               
              
                 
                = 
                ∫ 
                sin 
                 
                
                  [ 
                  
                    ∫ 
                    κ 
                    ( 
                    s 
                    ) 
                     
                    d 
                    s 
                   
                  ] 
                 
                d 
                s 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&=\int \cos \left[\int \kappa (s)\,ds\right]ds\\y&=\int \sin \left[\int \kappa (s)\,ds\right]ds\end{aligned}}} 
   
  
To polar coordinates 
From Cartesian coordinates 
  
    
      
        
          
            
              
                r 
               
              
                 
                = 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      
                        2 
                       
                     
                   
                 
               
             
            
              
                
                  θ 
                  ′ 
                 
               
              
                 
                = 
                arctan 
                 
                
                  | 
                  
                    
                      y 
                      x 
                     
                   
                  | 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta '&=\arctan \left|{\frac {y}{x}}\right|\end{aligned}}} 
   
  
Note: solving for 
  
    
      
        
          θ 
          ′ 
         
       
     
    {\displaystyle \theta '} 
   
   returns the resultant angle in the first quadrant (
  
    
      
        0 
        < 
        θ 
        < 
        
          
            π 
            2 
           
         
       
     
    {\textstyle 0<\theta <{\frac {\pi }{2}}} 
   
  ). To find 
  
    
      
        θ 
        , 
       
     
    {\displaystyle \theta ,} 
   
   one must refer to the original Cartesian coordinate, determine the quadrant in which 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
   lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for 
  
    
      
        θ 
        : 
       
     
    {\displaystyle \theta :} 
   
  
  
    
      
        θ 
        = 
        
          
            { 
            
              
                
                  
                    
                      
                        
                          2 
                         
                       
                     
                   
                  
                    θ 
                    ′ 
                   
                 
                
                  ( 
                  
                    for  
                   
                  
                    θ 
                    ′ 
                   
                  
                     in QI:  
                   
                  
                    
                      
                        I 
                        I 
                        V 
                       
                     
                   
                  0 
                  < 
                  
                    θ 
                    ′ 
                   
                  < 
                  
                    
                      π 
                      2 
                     
                   
                  ) 
                 
               
              
                
                  
                    
                      
                        
                          2 
                         
                       
                     
                   
                  π 
                  − 
                  
                    θ 
                    ′ 
                   
                 
                
                  ( 
                  
                    for  
                   
                  
                    θ 
                    ′ 
                   
                  
                     in QII:  
                   
                  
                    
                      
                        I 
                        V 
                       
                     
                   
                  
                    
                      π 
                      2 
                     
                   
                  < 
                  
                    θ 
                    ′ 
                   
                  < 
                  π 
                  ) 
                 
               
              
                
                  
                    
                      
                        
                          2 
                         
                       
                     
                   
                  π 
                  + 
                  
                    θ 
                    ′ 
                   
                 
                
                  ( 
                  
                    for  
                   
                  
                    θ 
                    ′ 
                   
                  
                     in QIII:  
                   
                  
                    
                      
                        I 
                        I 
                       
                     
                   
                  π 
                  < 
                  
                    θ 
                    ′ 
                   
                  < 
                  
                    
                      
                        3 
                        π 
                       
                      2 
                     
                   
                  ) 
                 
               
              
                
                  2 
                  π 
                  − 
                  
                    θ 
                    ′ 
                   
                 
                
                  ( 
                  
                    for  
                   
                  
                    θ 
                    ′ 
                   
                  
                     in QIV:  
                   
                  
                    
                      
                        I 
                       
                     
                   
                  
                    
                      
                        3 
                        π 
                       
                      2 
                     
                   
                  < 
                  
                    θ 
                    ′ 
                   
                  < 
                  2 
                  π 
                  ) 
                 
               
             
             
           
         
       
     
    {\displaystyle \theta ={\begin{cases}{\hphantom {2}}\theta '&({\text{for }}\theta '{\text{ in QI: }}{\phantom {IIV}}0<\theta '<{\frac {\pi }{2}})\\{\hphantom {2}}\pi -\theta '&({\text{for }}\theta '{\text{ in QII: }}{\phantom {IV}}{\frac {\pi }{2}}<\theta '<\pi )\\{\hphantom {2}}\pi +\theta '&({\text{for }}\theta '{\text{ in QIII: }}{\phantom {II}}\pi <\theta '<{\frac {3\pi }{2}})\\2\pi -\theta '&({\text{for }}\theta '{\text{ in QIV: }}{\phantom {I}}{\frac {3\pi }{2}}<\theta '<2\pi )\end{cases}}} 
   
  
The value for 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
   must be solved for in this manner because for all values of 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
  , 
  
    
      
        tan 
         
        θ 
       
     
    {\displaystyle \tan \theta } 
   
   is only defined for 
  
    
      
        − 
        
          
            π 
            2 
           
         
        < 
        θ 
        < 
        + 
        
          
            π 
            2 
           
         
       
     
    {\textstyle -{\frac {\pi }{2}}<\theta <+{\frac {\pi }{2}}} 
   
  , and is periodic (with period 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
  ). This means that the inverse function will only give values in the domain of the function, but restricted to a single period. Hence, the range of the inverse function is only half a full circle.
Note that one can also use
  
    
      
        
          
            
              
                r 
               
              
                 
                = 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      
                        2 
                       
                     
                   
                 
               
             
            
              
                
                  θ 
                  ′ 
                 
               
              
                 
                = 
                2 
                arctan 
                 
                
                  
                    y 
                    
                      x 
                      + 
                      r 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta '&=2\arctan {\frac {y}{x+r}}\end{aligned}}} 
   
  
From 2-center bipolar coordinates 
  
    
      
        
          
            
              
                r 
               
              
                 
                = 
                
                  
                    
                      
                        
                          r 
                          
                            1 
                           
                          
                            2 
                           
                         
                        + 
                        
                          r 
                          
                            2 
                           
                          
                            2 
                           
                         
                        − 
                        2 
                        
                          c 
                          
                            2 
                           
                         
                       
                      2 
                     
                   
                 
               
             
            
              
                θ 
               
              
                 
                = 
                arctan 
                 
                
                  [ 
                  
                    
                      
                        
                          
                            8 
                            
                              c 
                              
                                2 
                               
                             
                            ( 
                            
                              r 
                              
                                1 
                               
                              
                                2 
                               
                             
                            + 
                            
                              r 
                              
                                2 
                               
                              
                                2 
                               
                             
                            − 
                            2 
                            
                              c 
                              
                                2 
                               
                             
                            ) 
                           
                          
                            
                              r 
                              
                                1 
                               
                              
                                2 
                               
                             
                            − 
                            
                              r 
                              
                                2 
                               
                              
                                2 
                               
                             
                           
                         
                       
                      − 
                      1 
                     
                   
                  ] 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}r&={\sqrt {\frac {r_{1}^{2}+r_{2}^{2}-2c^{2}}{2}}}\\\theta &=\arctan \left[{\sqrt {{\frac {8c^{2}(r_{1}^{2}+r_{2}^{2}-2c^{2})}{r_{1}^{2}-r_{2}^{2}}}-1}}\right]\end{aligned}}} 
   
  
Where 2c  is the distance between the poles.
To log-polar coordinates from Cartesian coordinates 
  
    
      
        
          
            
              
                ρ 
               
              
                 
                = 
                log 
                 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      
                        2 
                       
                     
                   
                 
                , 
               
             
            
              
                θ 
               
              
                 
                = 
                arctan 
                 
                
                  
                    y 
                    x 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\rho &=\log {\sqrt {x^{2}+y^{2}}},\\\theta &=\arctan {\frac {y}{x}}.\end{aligned}}} 
   
  
Arc-length and curvature 
In Cartesian coordinates 
  
    
      
        
          
            
              
                κ 
               
              
                 
                = 
                
                  
                    
                      
                        x 
                        ′ 
                       
                      
                        y 
                        ″ 
                       
                      − 
                      
                        y 
                        ′ 
                       
                      
                        x 
                        ″ 
                       
                     
                    
                      ( 
                      
                        
                          
                            x 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      + 
                      
                        
                          
                            y 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      
                        ) 
                        
                          
                            3 
                            2 
                           
                         
                       
                     
                   
                 
               
             
            
              
                s 
               
              
                 
                = 
                
                  ∫ 
                  
                    a 
                   
                  
                    t 
                   
                 
                
                  
                    
                      
                        
                          x 
                          ′ 
                         
                       
                      
                        2 
                       
                     
                    + 
                    
                      
                        
                          y 
                          ′ 
                         
                       
                      
                        2 
                       
                     
                   
                 
                 
                d 
                t 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\kappa &={\frac {x'y''-y'x''}{({x'}^{2}+{y'}^{2})^{\frac {3}{2}}}}\\s&=\int _{a}^{t}{\sqrt {{x'}^{2}+{y'}^{2}}}\,dt\end{aligned}}} 
   
  
In polar coordinates 
  
    
      
        
          
            
              
                κ 
               
              
                 
                = 
                
                  
                    
                      
                        r 
                        
                          2 
                         
                       
                      + 
                      2 
                      
                        
                          
                            r 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      − 
                      r 
                      
                        r 
                        ″ 
                       
                     
                    
                      ( 
                      
                        r 
                        
                          2 
                         
                       
                      + 
                      
                        
                          
                            r 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      
                        ) 
                        
                          
                            3 
                            2 
                           
                         
                       
                     
                   
                 
               
             
            
              
                s 
               
              
                 
                = 
                
                  ∫ 
                  
                    a 
                   
                  
                    φ 
                   
                 
                
                  
                    
                      r 
                      
                        2 
                       
                     
                    + 
                    
                      
                        
                          r 
                          ′ 
                         
                       
                      
                        2 
                       
                     
                   
                 
                 
                d 
                φ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\kappa &={\frac {r^{2}+2{r'}^{2}-rr''}{(r^{2}+{r'}^{2})^{\frac {3}{2}}}}\\s&=\int _{a}^{\varphi }{\sqrt {r^{2}+{r'}^{2}}}\,d\varphi \end{aligned}}} 
   
  
3-dimensional 
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates , with θ the angle measured away from the +Z axis (as [1] , see conventions in spherical coordinates ). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range of 180°, running from 0° to 180°, and does not pose any problem when calculated from an arccosine, but beware for an arctangent.
If, in the alternative definition, θ  is chosen to run from −90° to +90°, in opposite direction of the earlier definition, it can be found uniquely from an arcsine, but beware of an arccotangent. In this case in all formulas below all arguments in θ  should have sine and cosine exchanged, and as derivative also a plus and minus exchanged.
All divisions by zero result in special cases of being directions along one of the main axes and are in practice most easily solved by observation.
To Cartesian coordinates 
From spherical coordinates 
 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                ρ 
                 
                sin 
                 
                θ 
                cos 
                 
                φ 
               
             
            
              
                y 
               
              
                 
                = 
                ρ 
                 
                sin 
                 
                θ 
                sin 
                 
                φ 
               
             
            
              
                z 
               
              
                 
                = 
                ρ 
                 
                cos 
                 
                θ 
               
             
            
              
                
                  
                    
                      ∂ 
                      ( 
                      x 
                      , 
                      y 
                      , 
                      z 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      ρ 
                      , 
                      θ 
                      , 
                      φ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          sin 
                           
                          θ 
                          cos 
                           
                          φ 
                         
                        
                          ρ 
                          cos 
                           
                          θ 
                          cos 
                           
                          φ 
                         
                        
                          − 
                          ρ 
                          sin 
                           
                          θ 
                          sin 
                           
                          φ 
                         
                       
                      
                        
                          sin 
                           
                          θ 
                          sin 
                           
                          φ 
                         
                        
                          ρ 
                          cos 
                           
                          θ 
                          sin 
                           
                          φ 
                         
                        
                          ρ 
                          sin 
                           
                          θ 
                          cos 
                           
                          φ 
                         
                       
                      
                        
                          cos 
                           
                          θ 
                         
                        
                          − 
                          ρ 
                          sin 
                           
                          θ 
                         
                        
                          0 
                         
                       
                     
                    ) 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&=\rho \,\sin \theta \cos \varphi \\y&=\rho \,\sin \theta \sin \varphi \\z&=\rho \,\cos \theta \\{\frac {\partial (x,y,z)}{\partial (\rho ,\theta ,\varphi )}}&={\begin{pmatrix}\sin \theta \cos \varphi &\rho \cos \theta \cos \varphi &-\rho \sin \theta \sin \varphi \\\sin \theta \sin \varphi &\rho \cos \theta \sin \varphi &\rho \sin \theta \cos \varphi \\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}\end{aligned}}} 
   
  
So for the volume element:
  
    
      
        d 
        x 
         
        d 
        y 
         
        d 
        z 
        = 
        det 
        
          
            
              ∂ 
              ( 
              x 
              , 
              y 
              , 
              z 
              ) 
             
            
              ∂ 
              ( 
              ρ 
              , 
              θ 
              , 
              φ 
              ) 
             
           
         
         
        d 
        ρ 
         
        d 
        θ 
         
        d 
        φ 
        = 
        
          ρ 
          
            2 
           
         
        sin 
         
        θ 
         
        d 
        ρ 
         
        d 
        θ 
         
        d 
        φ 
       
     
    {\displaystyle dx\,dy\,dz=\det {\frac {\partial (x,y,z)}{\partial (\rho ,\theta ,\varphi )}}\,d\rho \,d\theta \,d\varphi =\rho ^{2}\sin \theta \,d\rho \,d\theta \,d\varphi } 
   
  
From cylindrical coordinates 
 
  
    
      
        
          
            
              
                x 
               
              
                 
                = 
                r 
                 
                cos 
                 
                θ 
               
             
            
              
                y 
               
              
                 
                = 
                r 
                 
                sin 
                 
                θ 
               
             
            
              
                z 
               
              
                 
                = 
                z 
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      ( 
                      x 
                      , 
                      y 
                      , 
                      z 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      θ 
                      , 
                      z 
                      ) 
                     
                   
                 
               
              
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          cos 
                           
                          θ 
                         
                        
                          − 
                          r 
                          sin 
                           
                          θ 
                         
                        
                          0 
                         
                       
                      
                        
                          sin 
                           
                          θ 
                         
                        
                          r 
                          cos 
                           
                          θ 
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          0 
                         
                        
                          1 
                         
                       
                     
                    ) 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}x&=r\,\cos \theta \\y&=r\,\sin \theta \\z&=z\,\\{\frac {\partial (x,y,z)}{\partial (r,\theta ,z)}}&={\begin{pmatrix}\cos \theta &-r\sin \theta &0\\\sin \theta &r\cos \theta &0\\0&0&1\end{pmatrix}}\end{aligned}}} 
   
  
So for the volume element:
  
    
      
        d 
        V 
        = 
        d 
        x 
         
        d 
        y 
         
        d 
        z 
        = 
        det 
        
          
            
              ∂ 
              ( 
              x 
              , 
              y 
              , 
              z 
              ) 
             
            
              ∂ 
              ( 
              r 
              , 
              θ 
              , 
              z 
              ) 
             
           
         
         
        d 
        r 
         
        d 
        θ 
         
        d 
        z 
        = 
        r 
         
        d 
        r 
         
        d 
        θ 
         
        d 
        z 
       
     
    {\displaystyle dV=dx\,dy\,dz=\det {\frac {\partial (x,y,z)}{\partial (r,\theta ,z)}}\,dr\,d\theta \,dz=r\,dr\,d\theta \,dz} 
   
  
To spherical coordinates 
 
From Cartesian coordinates 
  
    
      
        
          
            
              
                ρ 
               
              
                 
                = 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      
                        2 
                       
                     
                    + 
                    
                      z 
                      
                        2 
                       
                     
                   
                 
               
             
            
              
                θ 
               
              
                 
                = 
                arctan 
                 
                
                  ( 
                  
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                      z 
                     
                   
                  ) 
                 
                = 
                arccos 
                 
                
                  ( 
                  
                    
                      z 
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                        + 
                        
                          z 
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                φ 
               
              
                 
                = 
                arctan 
                 
                
                  ( 
                  
                    
                      y 
                      x 
                     
                   
                  ) 
                 
                = 
                arccos 
                 
                
                  ( 
                  
                    
                      x 
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
                = 
                arcsin 
                 
                
                  ( 
                  
                    
                      y 
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        ( 
                        
                          ρ 
                          , 
                          θ 
                          , 
                          φ 
                         
                        ) 
                       
                     
                    
                      ∂ 
                      
                        ( 
                        
                          x 
                          , 
                          y 
                          , 
                          z 
                         
                        ) 
                       
                     
                   
                 
               
              
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          
                            
                              x 
                              ρ 
                             
                           
                         
                        
                          
                            
                              y 
                              ρ 
                             
                           
                         
                        
                          
                            
                              z 
                              ρ 
                             
                           
                         
                       
                      
                        
                          
                            
                              
                                x 
                                z 
                               
                              
                                
                                  ρ 
                                  
                                    2 
                                   
                                 
                                
                                  
                                    
                                      x 
                                      
                                        2 
                                       
                                     
                                    + 
                                    
                                      y 
                                      
                                        2 
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                        
                          
                            
                              
                                y 
                                z 
                               
                              
                                
                                  ρ 
                                  
                                    2 
                                   
                                 
                                
                                  
                                    
                                      x 
                                      
                                        2 
                                       
                                     
                                    + 
                                    
                                      y 
                                      
                                        2 
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                        
                          − 
                          
                            
                              
                                
                                  x 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  y 
                                  
                                    2 
                                   
                                 
                               
                              
                                ρ 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                      
                        
                          
                            
                              
                                − 
                                y 
                               
                              
                                
                                  x 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  y 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                         
                        
                          
                            
                              x 
                              
                                
                                  x 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  y 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                         
                        
                          0 
                         
                       
                     
                    ) 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\rho &={\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=\arctan \left({\frac {\sqrt {x^{2}+y^{2}}}{z}}\right)=\arccos \left({\frac {z}{\sqrt {x^{2}+y^{2}+z^{2}}}}\right)\\\varphi &=\arctan \left({\frac {y}{x}}\right)=\arccos \left({\frac {x}{\sqrt {x^{2}+y^{2}}}}\right)=\arcsin \left({\frac {y}{\sqrt {x^{2}+y^{2}}}}\right)\\{\frac {\partial \left(\rho ,\theta ,\varphi \right)}{\partial \left(x,y,z\right)}}&={\begin{pmatrix}{\frac {x}{\rho }}&{\frac {y}{\rho }}&{\frac {z}{\rho }}\\{\frac {xz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {yz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&-{\frac {\sqrt {x^{2}+y^{2}}}{\rho ^{2}}}\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\\\end{pmatrix}}\end{aligned}}} 
   
  
See also the article on atan2  for how to elegantly handle some edge cases.
So for the element:
  
    
      
        d 
        ρ 
         
        d 
        θ 
         
        d 
        φ 
        = 
        det 
        
          
            
              ∂ 
              ( 
              ρ 
              , 
              θ 
              , 
              φ 
              ) 
             
            
              ∂ 
              ( 
              x 
              , 
              y 
              , 
              z 
              ) 
             
           
         
         
        d 
        x 
         
        d 
        y 
         
        d 
        z 
        = 
        
          
            1 
            
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  
                    y 
                    
                      2 
                     
                   
                 
               
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  
                    y 
                    
                      2 
                     
                   
                  + 
                  
                    z 
                    
                      2 
                     
                   
                 
               
             
           
         
         
        d 
        x 
         
        d 
        y 
         
        d 
        z 
       
     
    {\displaystyle d\rho \,d\theta \,d\varphi =\det {\frac {\partial (\rho ,\theta ,\varphi )}{\partial (x,y,z)}}\,dx\,dy\,dz={\frac {1}{{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+z^{2}}}}}\,dx\,dy\,dz} 
   
  
From cylindrical coordinates 
 
  
    
      
        
          
            
              
                ρ 
               
              
                 
                = 
                
                  
                    
                      r 
                      
                        2 
                       
                     
                    + 
                    
                      h 
                      
                        2 
                       
                     
                   
                 
               
             
            
              
                θ 
               
              
                 
                = 
                arctan 
                 
                
                  
                    r 
                    h 
                   
                 
               
             
            
              
                φ 
               
              
                 
                = 
                φ 
               
             
            
              
                
                  
                    
                      ∂ 
                      ( 
                      ρ 
                      , 
                      θ 
                      , 
                      φ 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      h 
                      , 
                      φ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          
                            
                              r 
                              
                                
                                  r 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  h 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                         
                        
                          
                            
                              h 
                              
                                
                                  r 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  h 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                         
                        
                          0 
                         
                       
                      
                        
                          
                            
                              h 
                              
                                
                                  r 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  h 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                         
                        
                          
                            
                              
                                − 
                                r 
                               
                              
                                
                                  r 
                                  
                                    2 
                                   
                                 
                                + 
                                
                                  h 
                                  
                                    2 
                                   
                                 
                               
                             
                           
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          0 
                         
                        
                          1 
                         
                       
                     
                    ) 
                   
                 
               
             
            
              
                det 
                
                  
                    
                      ∂ 
                      ( 
                      ρ 
                      , 
                      θ 
                      , 
                      φ 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      h 
                      , 
                      φ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                
                  
                    1 
                    
                      
                        r 
                        
                          2 
                         
                       
                      + 
                      
                        h 
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\rho &={\sqrt {r^{2}+h^{2}}}\\\theta &=\arctan {\frac {r}{h}}\\\varphi &=\varphi \\{\frac {\partial (\rho ,\theta ,\varphi )}{\partial (r,h,\varphi )}}&={\begin{pmatrix}{\frac {r}{\sqrt {r^{2}+h^{2}}}}&{\frac {h}{\sqrt {r^{2}+h^{2}}}}&0\\{\frac {h}{r^{2}+h^{2}}}&{\frac {-r}{r^{2}+h^{2}}}&0\\0&0&1\\\end{pmatrix}}\\\det {\frac {\partial (\rho ,\theta ,\varphi )}{\partial (r,h,\varphi )}}&={\frac {1}{\sqrt {r^{2}+h^{2}}}}\end{aligned}}} 
   
  
To cylindrical coordinates 
From Cartesian coordinates 
  
    
      
        
          
            
              
                r 
               
              
                 
                = 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      
                        2 
                       
                     
                   
                 
               
             
            
              
                θ 
               
              
                 
                = 
                arctan 
                 
                
                  
                    ( 
                    
                      
                        y 
                        x 
                       
                     
                    ) 
                   
                 
               
             
            
              
                z 
               
              
                 
                = 
                z 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta &=\arctan {\left({\frac {y}{x}}\right)}\\z&=z\quad \end{aligned}}} 
   
  
  
    
      
        
          
            
              ∂ 
              ( 
              r 
              , 
              θ 
              , 
              h 
              ) 
             
            
              ∂ 
              ( 
              x 
              , 
              y 
              , 
              z 
              ) 
             
           
         
        = 
        
          
            ( 
            
              
                
                  
                    
                      x 
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      y 
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                     
                   
                 
                
                  0 
                 
               
              
                
                  
                    
                      
                        − 
                        y 
                       
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      x 
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        
                          y 
                          
                            2 
                           
                         
                       
                     
                   
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  1 
                 
               
             
            ) 
           
         
       
     
    {\displaystyle {\frac {\partial (r,\theta ,h)}{\partial (x,y,z)}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&{\frac {y}{\sqrt {x^{2}+y^{2}}}}&0\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\\0&0&1\end{pmatrix}}} 
   
  
From spherical coordinates 
  
    
      
        
          
            
              
                r 
               
              
                 
                = 
                ρ 
                sin 
                 
                φ 
               
             
            
              
                h 
               
              
                 
                = 
                ρ 
                cos 
                 
                φ 
               
             
            
              
                θ 
               
              
                 
                = 
                θ 
               
             
            
              
                
                  
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      h 
                      , 
                      θ 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      ρ 
                      , 
                      φ 
                      , 
                      θ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          sin 
                           
                          φ 
                         
                        
                          ρ 
                          cos 
                           
                          φ 
                         
                        
                          0 
                         
                       
                      
                        
                          cos 
                           
                          φ 
                         
                        
                          − 
                          ρ 
                          sin 
                           
                          φ 
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          0 
                         
                        
                          1 
                         
                       
                     
                    ) 
                   
                 
               
             
            
              
                det 
                
                  
                    
                      ∂ 
                      ( 
                      r 
                      , 
                      h 
                      , 
                      θ 
                      ) 
                     
                    
                      ∂ 
                      ( 
                      ρ 
                      , 
                      φ 
                      , 
                      θ 
                      ) 
                     
                   
                 
               
              
                 
                = 
                − 
                ρ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}r&=\rho \sin \varphi \\h&=\rho \cos \varphi \\\theta &=\theta \\{\frac {\partial (r,h,\theta )}{\partial (\rho ,\varphi ,\theta )}}&={\begin{pmatrix}\sin \varphi &\rho \cos \varphi &0\\\cos \varphi &-\rho \sin \varphi &0\\0&0&1\\\end{pmatrix}}\\\det {\frac {\partial (r,h,\theta )}{\partial (\rho ,\varphi ,\theta )}}&=-\rho \end{aligned}}} 
   
  
 Arc-length, curvature and torsion from Cartesian coordinates 
  
    
      
        
          
            
              
                s 
               
              
                 
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    t 
                   
                 
                
                  
                    
                      
                        
                          x 
                          ′ 
                         
                       
                      
                        2 
                       
                     
                    + 
                    
                      
                        
                          y 
                          ′ 
                         
                       
                      
                        2 
                       
                     
                    + 
                    
                      
                        
                          z 
                          ′ 
                         
                       
                      
                        2 
                       
                     
                   
                 
                 
                d 
                t 
               
             
            
              
                κ 
               
              
                 
                = 
                
                  
                    
                      ( 
                      
                        z 
                        ″ 
                       
                      
                        y 
                        ′ 
                       
                      − 
                      
                        y 
                        ″ 
                       
                      
                        z 
                        ′ 
                       
                      
                        ) 
                        
                          2 
                         
                       
                      + 
                      ( 
                      
                        x 
                        ″ 
                       
                      
                        z 
                        ′ 
                       
                      − 
                      
                        z 
                        ″ 
                       
                      
                        x 
                        ′ 
                       
                      
                        ) 
                        
                          2 
                         
                       
                      + 
                      ( 
                      
                        y 
                        ″ 
                       
                      
                        x 
                        ′ 
                       
                      − 
                      
                        x 
                        ″ 
                       
                      
                        y 
                        ′ 
                       
                      
                        ) 
                        
                          2 
                         
                       
                     
                    
                      ( 
                      
                        
                          
                            x 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      + 
                      
                        
                          
                            y 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      + 
                      
                        
                          
                            z 
                            ′ 
                           
                         
                        
                          2 
                         
                       
                      
                        ) 
                        
                          
                            3 
                            2 
                           
                         
                       
                     
                   
                 
               
             
            
              
                τ 
               
              
                 
                = 
                
                  
                    
                      
                        x 
                        ‴ 
                       
                      ( 
                      
                        y 
                        ′ 
                       
                      
                        z 
                        ″ 
                       
                      − 
                      
                        y 
                        ″ 
                       
                      
                        z 
                        ′ 
                       
                      ) 
                      + 
                      
                        y 
                        ‴ 
                       
                      ( 
                      
                        x 
                        ″ 
                       
                      
                        z 
                        ′ 
                       
                      − 
                      
                        x 
                        ′ 
                       
                      
                        z 
                        ″ 
                       
                      ) 
                      + 
                      
                        z 
                        ‴ 
                       
                      ( 
                      
                        x 
                        ′ 
                       
                      
                        y 
                        ″ 
                       
                      − 
                      
                        x 
                        ″ 
                       
                      
                        y 
                        ′ 
                       
                      ) 
                     
                    
                      
                        
                          ( 
                          
                            x 
                            ′ 
                           
                          
                            y 
                            ″ 
                           
                          − 
                          
                            x 
                            ″ 
                           
                          
                            y 
                            ′ 
                           
                          ) 
                         
                        
                          2 
                         
                       
                      + 
                      
                        
                          ( 
                          
                            x 
                            ″ 
                           
                          
                            z 
                            ′ 
                           
                          − 
                          
                            x 
                            ′ 
                           
                          
                            z 
                            ″ 
                           
                          ) 
                         
                        
                          2 
                         
                       
                      + 
                      
                        
                          ( 
                          
                            y 
                            ′ 
                           
                          
                            z 
                            ″ 
                           
                          − 
                          
                            y 
                            ″ 
                           
                          
                            z 
                            ′ 
                           
                          ) 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}s&=\int _{0}^{t}{\sqrt {{x'}^{2}+{y'}^{2}+{z'}^{2}}}\,dt\\[3pt]\kappa &={\frac {\sqrt {(z''y'-y''z')^{2}+(x''z'-z''x')^{2}+(y''x'-x''y')^{2}}}{({x'}^{2}+{y'}^{2}+{z'}^{2})^{\frac {3}{2}}}}\\[3pt]\tau &={\frac {x'''(y'z''-y''z')+y'''(x''z'-x'z'')+z'''(x'y''-x''y')}{{(x'y''-x''y')}^{2}+{(x''z'-x'z'')}^{2}+{(y'z''-y''z')}^{2}}}\end{aligned}}} 
   
  
See also 
References