Jump to content

Turán's method

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Kku (talk | contribs) at 12:17, 8 November 2023 (link [cC]omplex number). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, Turán's method provides lower bounds for exponential sums and complex power sums. The method has been applied to problems in equidistribution.

The method applies to sums of the form

where the b and z are complex numbers and ν runs over a range of integers. There are two main results, depending on the size of the complex numbers z.

Turán's first theorem

[edit]

The first result applies to sums sν where for all n. For any range of ν of length N, say ν = M + 1, ..., M + N, there is some ν with |sν| at least c(MN)|s0| where

The sum here may be replaced by the weaker but simpler .

We may deduce the Fabry gap theorem from this result.

Turán's second theorem

[edit]

The second result applies to sums sν where for all n. Assume that the z are ordered in decreasing absolute value and scaled so that |z1| = 1. Then there is some ν with

See also

[edit]

References

[edit]
  • Montgomery, Hugh L. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis. Regional Conference Series in Mathematics. Vol. 84. Providence, RI: American Mathematical Society. ISBN 0-8218-0737-4. Zbl 0814.11001.