Jump to content

Analytic combinatorics

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Dom walden (talk | contribs) at 14:28, 5 November 2023 (History). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Analytic combinatorics uses techniques from complex analysis to find asymptotic estimates for the coefficients of generating functions.[1][2][3]

History

One of the earliest uses of analytic techniques for an enumeration problem came from Srinivasa Ramanujan and G. H. Hardy's work on integer partitions,[4][5] starting in 1918, first using a Tauberian theorem and later the circle method.[6]

Walter Hayman's 1956 paper A Generalisation of Stirling's Formula is considered one of the earliest examples of the saddle-point method.[7][8][9]

In 1990, Flajolet and Odlyzko developed the theory of singularity analysis.[10]

In 2009, Flajolet and Sedgewick wrote the book Analytic Combinatorics.

Some of the earliest work on multivariate generating functions started in the 1970s using probabilistic methods.[11]

Development of further multivariate techniques started in the early 2000s.[12]

Techniques

Meromorphic functions

If is a meromorphic function and is its pole closest to the origin with order , then[13]

as

Tauberian theorem

If

as

where and is a slowly varying function, then[14]

as

See also the Hardy–Littlewood Tauberian theorem.

Circle Method

For generating functions with logarithms or roots, which have branch singularities.[15]

Darboux's method

If we have a function where and has a radius of convergence greater than and a Taylor expansion near 1 of , then[16]

See Szegő (1975) for a similar theorem dealing with multiple singularities.

Singularity analysis

If has a singularity at and

as

where then[17]

as

Saddle-point method

For generating functions including entire functions which have no singularities.[18]

Intuitively, the biggest contribution to the contour integral is around the saddle point and estimating near the saddle-point gives us an estimate for the whole contour.

If is an admissible function[19], then[20]

as

where .

Notes

  1. ^ Melczer 2021, pp. vii and ix.
  2. ^ Pemantle and Wilson 2013, pp. xi.
  3. ^ Flajolet and Sedgewick 2009, pp. ix.
  4. ^ Melczer 2021, pp. vii.
  5. ^ Pemantle and Wilson 2013, pp. 62-63.
  6. ^ Pemantle and Wilson 2013, pp. 62.
  7. ^ Pemantle and Wilson 2013, pp. 63.
  8. ^ Wilf 2006, pp. 197.
  9. ^ Flajolet and Sedgewick 2009, pp. 607.
  10. ^ Flajolet and Sedgewick 2009, pp. 438.
  11. ^ Melczer 2021, pp. 13. Flajolet and Sedgewick 2009, pp. 650 and 717.
  12. ^ Melczer 2021, pp. 13-14.
  13. ^ Sedgewick 4, pp. 59
  14. ^ Flajolet and Sedgewick 2009, pp. 435. Hardy 1949, pp. 166. I use the form in which it is stated by Flajolet and Sedgewick.
  15. ^ Pemantle and Wilson 2013, pp. 55-56.
  16. ^ Wilf 2006, pp. 194.
  17. ^ Flajolet and Sedgewick 2009, pp. 393.
  18. ^ Wilf 2006, pp. 196. Flajolet and Sedgewick 2009, pp. 542.
  19. ^ See Flajolet and Sedgewick 2009, pp. 565 or Wilf 2006, pp. 199.
  20. ^ Flajolet and Sedgewick 2009, pp. 553. Sedgewick 8, pp. 25.

References

  • Flajolet, Philippe; Sedgewick, Robert (2009). Analytic Combinatorics (PDF). Cambridge University Press.
  • Hardy, G.H. (1949). Divergent Series (1st ed.). Oxford University Press.
  • Melczer, Stephen (2021). An Invitation to Analytic Combinatorics: From One to Several Variables (PDF). Springer Texts & Monographs in Symbolic Computation.
  • Pemantle, Robin; Wilson, Mark C. (2013). Analytic Combinatorics in Several Variables (PDF). Cambridge University Press.
  • Sedgewick, Robert. "4. Complex Analysis, Rational and Meromorphic Asymptotics" (PDF). Retrieved 4 November 2023.
  • Sedgewick, Robert. "8. Saddle-Point Asymptotics" (PDF). Retrieved 4 November 2023.
  • Szegő, Gabor (1975). Orthogonal Polynomials (4th ed.). American Mathematical Society.
  • Wilf, Herbert S. (2006). Generatingfunctionology (PDF) (3rd ed.). A K Peters, Ltd.

As of 4th November 2023, this article is derived in whole or in part from Wikibooks. The copyright holder has licensed the content in a manner that permits reuse under CC BY-SA 3.0 and GFDL. All relevant terms must be followed.

Further reading

  • De Bruijn, N.G. (1981). Asymptotic Methods in Analysis. Dover Publications.
  • Flajolet, Philippe; Odlyzko, Andrew (1990). "Singularity analysis of generating functions" (PDF). SIAM Journal on Discrete Mathematics. 1990 (3).
  • Mishna, Marni (2020). Analytic Combinatorics: A Multidimensional Approach. Taylor & Francis Group, LLC.
  • Sedgewick, Robert. "6. Singularity Analysis" (PDF).

See also