User:An anonymous user with secrets/sandbox/Error-driven learning
Error-driven learning is a type of reinforcement learning algorithm that adjusts the parameters of a model based on the difference between the desired and actual outputs. It is similar to other types of machine learning, but differs, as it relies on feedback from the environment rather than explicit labels or categories.[1] These learning models are based on the idea that language acquisition involves the minimization of prediction error(the difference between what was predicted and what was actually observed). Through these prediction errors, these models keep adjusting expectations, simplify computational complexity[1][2]
Error-driven learning is the basis for a vast array of computational models in the brain and cognitive sciences. [2] These methods have also been successfully applied in many areas of natural language processing (NLP), including part-of-speech tagging[3], parsing[3] named entity recognition (NER)[4], machine translation (MT)[5], speech recognition (SR)[3] and and dialogue systems[6].
Formal Definition
Algorithms
The most common error backpropagation learning algorithm is the GeneRec(generalized recirculation algorithm), which is used for gene prediction in DNA sequences. In fact, all other error-driven learning algorithms use an alternative version of GeneRec.[7]
Significance
Cognitive science
NLPs
Part-of-speech tagging
This is the task of assigning a word class (such as noun, verb, adjective, etc.) to each word in a sentence. Error-driven learning can help the model learn from its mistakes and improve its accuracy over time.[3]
Parsing
This is the task of analyzing the syntactic structure of a sentence and producing a tree representation that shows how the words are related. Error-driven learning can help the model learn from its errors and adjust its parameters to produce more accurate parses.[3]
Named entity recognition
This is the task of identifying and classifying entities (such as persons, locations, organizations, etc.) in a text. Error-driven learning can help the model learn from its false positives and false negatives and improve its recall and precision on (NER).[4]
Machine translation
This is the task of translating a text from one language to another. Error-driven learning can help the model learn from its translation errors and improve its quality and fluency.[5]
Speech recognition
This is the task of converting spoken words into written text. Error-driven learning can help the model learn from its recognition errors and improve its accuracy and robustness.[3]
Dialogue systems
These are systems that can interact with humans using natural language, such as chatbots, virtual assistants, or conversational agents. Error-driven learning can help the model learn from its dialogue errors and improve its understanding and generation abilities.[6]
Limitations
One criticism of Error-driven learning is that it can lead to overfitting and generalization issues if not implemented properly . Another criticism is that it lacks interpretability, meaning that it can be difficult to understand how the model arrived at its predictions or decisions.[1]
References
- ^ a b c Sadre, Ramin; Pras, Aiko (2009-06-19). Scalability of Networks and Services: Third International Conference on Autonomous Infrastructure, Management and Security, AIMS 2009 Enschede, The Netherlands, June 30 - July 2, 2009, Proceedings. Springer. ISBN 978-3-642-02627-0.
- ^ a b Hoppe, Dorothée B.; Hendriks, Petra; Ramscar, Michael; van Rij, Jacolien (2022-10-01). "An exploration of error-driven learning in simple two-layer networks from a discriminative learning perspective". Behavior Research Methods. 54 (5): 2221–2251. doi:10.3758/s13428-021-01711-5. ISSN 1554-3528. PMC 9579095. PMID 35032022.
{{cite journal}}: CS1 maint: PMC format (link) - ^ a b c d e f Mohammad, Saif, and Ted Pedersen. "Combining lexical and syntactic features for supervised word sense disambiguation." Proceedings of the Eighth Conference on Computational Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004. 2004. APA
- ^ a b Florian, Radu, et al. "Named entity recognition through classifier combination." Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003. 2003.
- ^ a b Rozovskaya, Alla, and Dan Roth. "Grammatical error correction: Machine translation and classifiers." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016.
- ^ a b Iosif, Elias; Klasinas, Ioannis; Athanasopoulou, Georgia; Palogiannidi, Elisavet; Georgiladakis, Spiros; Louka, Katerina; Potamianos, Alexandros (2018-01-01). "Speech understanding for spoken dialogue systems: From corpus harvesting to grammar rule induction". Computer Speech & Language. 47: 272–297. doi:10.1016/j.csl.2017.08.002. ISSN 0885-2308.
- ^ O'Reilly, Randall C. (1996-07). "Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm". Neural Computation. 8 (5): 895–938. doi:10.1162/neco.1996.8.5.895. ISSN 0899-7667.
{{cite journal}}: Check date values in:|date=(help)