Jump to content

Open Smart Grid Protocol

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Greyjoy (talk | contribs) at 08:42, 17 September 2023 (Smart Grid Communication Protocols: Removed external links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Open Smart Grid Protocol (OSGP) is a family of specifications published by the European Telecommunications Standards Institute (ETSI) used in conjunction with the ISO/IEC 14908 control networking standard for smart grid applications. OSGP is optimized to provide reliable and efficient delivery of command and control information for smart meters, direct load control modules, solar panels, gateways, and other smart grid devices. With over 5 million OSGP based smart meters and devices deployed worldwide it is one of the most widely used smart meter and smart grid device networking standards.

Protocol layers and features

OSGP follows a modern, structured approach based on the OSI protocol model to meet the evolving challenges of the smart grid.

At the application layer, ETSI TS 104 001 provides a table-oriented data storage based, in part, on the ANSI C12.19 / MC12.19 / 2012 / IEEE Std 1377 standards for Utility Industry End Device Data Tables and ANSI C12.18 / MC12.18 / IEEE Std 1701, standard Protocol Specification for ANSI Type 2 Optical Port for its services and payload encapsulation. This standard and command system that provides for not only smart meters and related data but for general purpose extension to other smart grid devices.

ETSI TS 104 001 is an updated version of the application layer specification that incorporates enhanced security features, including AES 128 encryption, and replaces the previously ETSI GS OSG 001 version. OSGP is designed to be very bandwidth efficient, enabling it to offer high performance and low cost using bandwidth constrained media such as the power line. For example, just as SQL provides an efficient and flexible database query language for enterprise applications, OSGP provides an efficient and flexible query language for smart grid devices. As with SQL, OSGP supports reading and writing of single attributes, multiple elements, or even entire tables. As another example, OSGP includes capabilities for an adaptive, directed meshing system that enables any OSGP device to serve as a message repeater, further optimizing bandwidth use by repeating only those packets that need to be repeated. OSGP also includes authentication and encryption for all exchanges to protect the integrity and privacy of data as is required in the smart grid.

The intermediate layers of the OSGP stack leverage the ISO/IEC 14908 control networking standard, a field-proven multi-application widely used in smart grid, smart city, and smart building applications with more than 100 million devices deployed worldwide. ISO/IEC 14908 is highly optimized for efficient, reliable, and scalable control networking applications. The low overhead of ISO/IEC 14908 enables it to deliver high performance without requiring high bandwidth.

Since it builds on ISO/IEC 14908, which is media independent, OSGP has the possibility to be used with any current or future physical media. OSGP today uses ETSI TS 103 908 (PowerLine Telecommunications) as its physical layer. Although a new standard, products that conform to ETSI TS 103 908 prior to its formal adoption have been on the market for many years, with over 40 million smart meter and grid devices deployed.[1]

In 2020, IEC approved and published an International Standard (IEC 62056-8-8) defining the OSGP Communication Profile for the DLMS/COSEM suite of standards.

In addition, CEN/CENELEC approved and published a standard (CLC/TS 50586) for OSGP that describes its data interface model, application-level communication, management functionalities, and security mechanism for the exchange of data with smart-grid devices.

Both of these standards were part of the outcomes of the EU Smart Metering Mandate M/441 and its decision identifying OSGP as one of the protocols that can be used for Smart Metering deployments in Europe.

In is also important to define interoperability between information systems and applications, and this needs to be ensured independent of the physical layers. This is achieved using NTA 8150, which defines APIs higher level web services protocols (e.g. SOAP and xml). The NTA 8150 consists of two parts; 1) System Software API, description of the architecture and the API for AMI; 2) API usage per use case, description for specific AMI use cases, as examples.

Standards

OSGP is built upon the following open standards.

  • ETSI Technical specification TS 104 001: Open Smart Grid Protocol.[2] Produced by the ETSI Technical Committee for Powerline Telecommunications (TC PLT ), this application layer protocol can be used with multiple communication media.
  • ISO/IEC 14908-1:[3] Information technology—Control network protocol—Part 1: Protocol stack. Published through ISO/IEC JTC 1/SC 6, this standard specifies a multi-purpose control network protocol stack optimized for smart grid, smart building, and smart city applications.
  • ETSI Technical specification TS 103 908: Powerline Telecommunications (PLT);[4] BPSK Narrow Band Power Line Channel for Smart Metering Applications. This specification defines a high-performance narrow band powerline channel for control networking in the smart grid that can be used with multiple smart grid devices. It was produced by the ETSI Technical Committee for Powerline Telecommunications (TC PLT ).
  • IEC 62056-8-8:[5][6] This standard specifies an OSGP and ISO/IEC 14908 communication profile based on the OSGP lower layer stacks as part of the IEC 62056 DLMS/COSEM Suite series.
  • CLC/TS 50586:[7] This standard describes the OSGP data interface model, application-level communication, management functionalities, and security mechanism for the exchange of data with smart-grid devices.
  • ANSI C12.19:[8] This standard (as are its companions MC12.19 [9] and IEEE Std 1377™ standards) concepts, data types, and basic tables and procedures were mapped into Clause 6, "OSGP Device data representation" and Normative Annex A, "Basic Tables" in ETSI Technical specification TS 104 001.
  • ANSI C12.18:[10] (as are its companions MC12.18 [11] and IEEE Std 1701™ standards) services and payload encapsulation were mapped into clause "Basic OSGP services" in ETSI Technical specification TS 104 001.
  • NTA 8150 Part 1:[12] This standard specifies the System Software API, description of the architecture and the API for AMI
  • NTA 8150 Part 2 [13] This standard specifies the API usage per use case, description for specific AMI use cases, as examples.

OSGP is supported and maintained by the OSGP Alliance (formerly known as Energy Services Network Association), a non-profit corporation composed of utilities, manufacturers and system integrators.

Smart Grid Communication Protocols

  • Purpose: Smart Grid Communication Protocols are designed to enable communication and data exchange within smart grid systems, which modernize and optimize the electricity distribution process.
  • Data Transmission: They facilitate the transmission of data between various components of the smart grid, including smart meters, sensors, substations, and control centers.
  • Reliability: These protocols prioritize reliability and real-time communication to ensure the smooth operation of the grid and quick response to events like outages or fluctuations.
  • Security: Security is a critical aspect, as these protocols must protect sensitive grid data and prevent unauthorized access or tampering.
  • Interoperability: They promote interoperability between different devices and systems from various manufacturers, allowing seamless integration of new technologies.
  • Standards: Many protocols are built upon international standards, such as IEC 61850, IEEE 802.11, and IEEE 802.15.4, to ensure consistency and compatibility.
  • Wireless and Wired: Smart grid communication protocols can be either wired[14] (e.g., Ethernet, fiber-optic) or wireless (e.g., Wi-Fi, Zigbee, LoRa) depending on the specific use case and requirements.
  • Mesh Networks: Some protocols use mesh networking, where devices relay data through each other to extend coverage and improve robustness.
  • Data Types: They support various types of data, including meter readings, grid status information, and control commands for load balancing and demand response.
  • Latency: Low latency is crucial for real-time control and monitoring of the grid, so these protocols are optimized to minimize communication delays.
  • Scalability: They are designed to scale efficiently as the smart grid expands, accommodating a growing number of devices and data points.
  • Open vs. Proprietary: Some protocols are open standards, fostering innovation and competition, while others are proprietary, which can limit flexibility but may offer specific advantages.
  • Protocols Examples: Notable examples of smart grid communication[15] protocols include DNP3, Modbus, Zigbee, WiMAX, and the IEC 61850 standard for substation automation.
  • Grid Resilience: By facilitating better communication and control, these protocols contribute to grid resilience, helping utilities respond to and recover from disruptions more effectively.
  • Data Analytics: The data collected through these protocols can be analyzed to optimize grid operations, enhance energy efficiency, and support predictive maintenance.
  • Regulatory Compliance: Compliance with regulatory requirements is often a key consideration in the selection and deployment of these protocols.

See also

References

  1. ^ http://www.etsi.org/WebSite/NewsandEvents/2012_01_Open_Smart_Grid.aspx ETSI Approves Open Smart Grid Protocol (OSGP) for Grid Technologies
  2. ^ http://www.etsi.org/deliver/etsi_ts/104000_104099/104001/02.01.01_60/ts_104001v020101p.pdf ETSI Technical specification TS 104 001: Open Smart Grid Protocol
  3. ^ http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60203 ISO/IEC 14908-1
  4. ^ http://www.etsi.org/deliver/etsi_ts/103900_103999/103908/01.01.01_60/ts_103908v010101p.pdf ETSI Technical specification TS 103 908: Powerline Telecommunications (PLT)
  5. ^ "IEC 62056-8-8:2020 | IEC Webstore".
  6. ^ "News events".
  7. ^ https://shop.bsigroup.com/ProductDetail?pid=000000000030382514
  8. ^ https://www.nema.org/Standards/ComplimentaryDocuments/C12-19-2012-Contents-and-Scope.pdf Archived 2015-09-23 at the Wayback Machine ANSI C12.19, American National Standard for Utility Industry End Device Data Tables.
  9. ^ https://www.ecmx.org/public/Resources/Documents/standards/mc/MC1219-2013-intro.pdf MC12.19, Utility Industry Metering Communication Protocol Application Layer (End Device Data Tables)
  10. ^ https://www.nema.org/Standards/ComplimentaryDocuments/ANSI-C12-18.pdf Archived 2015-05-23 at the Wayback Machine ANSI C12.18-2006, American National Standard, Protocol Specification for ANSI Type 2 Optical Port.
  11. ^ https://www.ecmx.org/public/Resources/Documents/standards/mc/MC1218-2013-intro.pdf MC12.18, ANSI Type II Optical Port Communication Protocol Complement for the Utility Industry End Device Data Tables.
  12. ^ "NTA 8150-1:2010 en".
  13. ^ "NTA 8150-2:2010 en".
  14. ^ Desk, Friendtechbd (2023-07-11). "Smart Grid Communication Protocols: Revolutionizing Energy Management". FRIENDTECHBD. Retrieved 2023-09-17. {{cite web}}: |last= has generic name (help)
  15. ^ Desk, Friendtechbd (2023-07-11). "Smart Grid Communication Protocols: Revolutionizing Energy Management". FRIENDTECHBD. Retrieved 2023-09-17. {{cite web}}: |last= has generic name (help)