Jump to content

Talk:Diagonal matrix

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 134.95.67.81 (talk) at 10:59, 16 March 2004. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In the last section, Uses, some confusion arises regarding the different meanings of "unitarily equivalent" and "unitarily similar".

I am fairly confident that the spectral theorem states that a normal matrix is unitarily equivalent to a diagonal matrix, with unitarily equivalent defined as follows:

A square matrix A is considered unitarily equivalent to a matrix B if there exists a unitary matrix U that satisfies A=UBU^\dagger, where U^\dagger means taking the complex conjugate of the transpose of U.

Now, an mxn matrix A is considered unitarily similar to an mxn matrix B if there exist two unitary matrices U (nxn) and T (mxm) satisfying A=TBU^\dagger. This definition plays a role in the cited singular value decomposition theorem.

So I'd prefer to see the two terms swap places, if people can agree on using the words with the meaning outlined above.