Jump to content

Complement component 2

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Brendamarteenez (talk | contribs) at 22:36, 24 April 2023 (Complement Component 2 Deficiency). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
C2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesC2, ARMD14, CO2, complement component 2, complement C2
External IDsOMIM: 613927; MGI: 88226; HomoloGene: 45; GeneCards: C2; OMA:C2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_013484

RefSeq (protein)

NP_038512

Location (UCSC)Chr 6: 31.9 – 31.95 MbChr 17: 35.08 – 35.12 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Complement C2 is a protein that in humans is encoded by the C2 gene.[5] The protein encoded by this gene is part of the classical pathway of the complement system, acting as a multi-domain serine protease. Deficiency of C2 has been associated with certain autoimmune diseases.[5]

The Complement system is generated to regulate self protection from infection. The overall Complement system is composed of protein groups that collaborate in destroying foreign invaders, which ultimately remove debris from cells and tissues. When the body detects a foreign invader, the body signals the Complement system and the Complement component 2 protein attaches to Complement system 4 resulting in an immune response. Complement component 2 protein is critical for regulating the body's immune response.

Function

In the classical and lectin pathways of complement activation, formation of the C3-convertase and C5-convertases requires binding of C2 to an activated surface-bound C4b in the presence of Mg2+; the resultant C4bC2 complex is cleaved by C1s or MASP2 into C2a and C2b. It is thought that cleavage of C2 by C1s, while bound to C4b, results in a conformational rotation of C2b whereas the released C2a fragment may retain most of its original structure.

C2b is the smallest , enzymatically active, fragment of C3 convertase in this pathway, C4b2b (NB: some sources now refer to the larger fragment of C2 as C2b, making the C3 convertase C4b2b, whereas older sources refer to the larger fragment of C2 as C2a, making the C3 convertase C4b2a). The smaller fragment, C2a (or C2b, depending on the source) is released into the fluid phase.[6]

Complement Component 2 Deficiency

Complement C2 is a protein that in humans is encoded by the C2 gene.

In the Molecular Biology, the deficiency of Complement Component 2 is a disorder that causes a major effect in the immune system, resulting in a form of immunodeficiency. This effect results in an inability to protect the body against any foreign invader. Complement component 2 deficiency is also connected with an increased risk of developing autoimmune disorders, such as systemic vasculitis. Complement deficiencies is a challenge to understand due to insufficient clinical trails. Using a hemolytic-plaque assay, RNA extraction, and blot analysis, it is fair to note that complement component 2 deficiency is a result of pre-translational regulatory detect in C2 gene expression. This detects a lack of synthesis within the C2 protein. This deficiency can be further understood by incorporating plasma protein deficiencies, especially those in tissue macrophages.

References

  1. ^ a b c ENSG00000235017, ENSG00000235696, ENSG00000226560, ENSG00000204364, ENSG00000166278, ENSG00000231543 GRCh38: Ensembl release 89: ENSG00000206372, ENSG00000235017, ENSG00000235696, ENSG00000226560, ENSG00000204364, ENSG00000166278, ENSG00000231543Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024371Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: C2 complement component 2".
  6. ^ Krishnan V, Xu Y, Macon K, Volanakis JE, Narayana SV (2009). "The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation". Acta Crystallographica D. 65 (Pt 3): 266–274. doi:10.1107/S0907444909000389. PMC 2651757. PMID 19237749.

Further reading

Jonsson G, Sjoholm AG, Truedsson L, Bengtsson AA, Braconier JH, Sturfelt G. Rheumatological manifestations, organ damage and autoimmunity in hereditary C2deficiency. Rheumatology (Oxford). 2007 Jul;46(7):1133-9. doi:10.1093/ rheumatology/kem023. Epub 2007 May 3. Citation on PubMed (https://pubmed.ncbi. nlm.nih.gov/17478473)

Jonsson G, Truedsson L, Sturfelt G, Oxelius VA, Braconier JH, Sjoholm AG. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine (Baltimore). 2005Jan;84(1):23-34. doi: 10.1097/01.md.0000152371.22747.1e. Citation on PubMed (https://pubmed.ncb i.nlm.nih.gov/15643297) Complement+2 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol. 2006 Jan;43(1-2):78-85. doi: 10.1016/j.molimm.2005.06.025. PMID: 16026838. Wen L, Atkinson JP, Giclas PC. Clinical and laboratory evaluation of complement deficiency. J Allergy Clin Immunol. 2004 Apr;113(4):585-93; quiz 594. doi: 10.1016/j.jaci.2004.02.003. PMID: 15100659. Chen HH, Tsai LJ, Lee KR, Chen YM, Hung WT, Chen DY. Genetic association of complement component 2 polymorphism with systemic lupus erythematosus. Tissue Antigens. 2015 Aug;86(2):122-33. doi: 10.1111/tan.12602. Epub 2015 Jul 14. PMID: 26176736.