Jump to content

Convex space

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Freelance Intellectual (talk | contribs) at 11:01, 3 April 2023 (Formal Definition: typo). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a convex space (or barycentric algebra) is a space in which it is possible to take convex combinations of any sets of points.[1][2]

Formal Definition

A convex space can be defined as a set equipped with a binary convex combination operation for each satisfying:

  • (for )

From this, it is possible to define an n-ary convex combination operation, parametrised by an n-tuple , where .

Examples

Any real affine space is a convex space. More generally, any convex subset of a real affine space is a convex space.

History

Convex spaces have been independently invented many times and given different names, dating back at least to Stone (1949)[3]. They were also studied by Neumann (1970)[4] and Świrszcz (1974)[5], among others.

References

  1. ^ "Convex space". nLab. Retrieved 3 April 2023.
  2. ^ Fritz, Tobias. "Convex Spaces I: Definition and Examples". arXiv. Retrieved 3 April 2023.
  3. ^ Stone, Marshall Harvey (1949). "Postulates for the barycentric calculus". Annali di Matematica Pura ed Applicata. 29: 25–30.
  4. ^ Neumann, Walter David (1970). "On the quasivariety of convex subsets of affine spaces". Archiv der Mathematik. 21: 11–16.
  5. ^ Świrszcz, Tadeusz (1974). "Monadic functors and convexity". Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques. 22: 39–42.