Jump to content

Control system

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Fgnievinski (talk | contribs) at 03:18, 11 March 2023 (Linear control: split into Linear control). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The centrifugal governor is an early proportional control mechanism.

A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines. The control systems are designed via control engineering process.

For continuously modulated control, a feedback controller is used to automatically control a process or operation. The control system compares the value or status of the process variable (PV) being controlled with the desired value or setpoint (SP), and applies the difference as a control signal to bring the process variable output of the plant to the same value as the setpoint.

For sequential and combinational logic, software logic, such as in a programmable logic controller, is used.[clarification needed]

Open-loop and closed-loop control

There are two common classes of control action: open loop and closed loop. In an open-loop control system, the control action from the controller is independent of the process variable. An example of this is a central heating boiler controlled only by a timer. The control action is the switching on or off of the boiler. The process variable is the building temperature. This controller operates the heating system for a constant time regardless of the temperature of the building.

In a closed-loop control system, the control action from the controller is dependent on the desired and actual process variable. In the case of the boiler analogy, this would utilize a thermostat to monitor the building temperature, and feed back a signal to ensure the controller output maintains the building temperature close to that set on the thermostat. A closed-loop controller has a feedback loop which ensures the controller exerts a control action to control a process variable at the same value as the setpoint. For this reason, closed-loop controllers are also called feedback controllers.[1]

Feedback control systems

Example of a single industrial control loop; showing continuously modulated control of process flow.
A basic feedback loop

In the case of linear feedback systems, a control loop including sensors, control algorithms, and actuators is arranged in an attempt to regulate a variable at a setpoint (SP). An everyday example is the cruise control on a road vehicle; where external influences such as hills would cause speed changes, and the driver has the ability to alter the desired set speed. The PID algorithm in the controller restores the actual speed to the desired speed in an optimum way, with minimal delay or overshoot, by controlling the power output of the vehicle's engine.

Control systems that include some sensing of the results they are trying to achieve are making use of feedback and can adapt to varying circumstances to some extent. Open-loop control systems do not make use of feedback, and run only in pre-arranged ways.

Logic control

Logic control systems for industrial and commercial machinery were historically implemented by interconnected electrical relays and cam timers using ladder logic. Today, most such systems are constructed with microcontrollers or more specialized programmable logic controllers (PLCs). The notation of ladder logic is still in use as a programming method for PLCs.[2]

Logic controllers may respond to switches and sensors and can cause the machinery to start and stop various operations through the use of actuators. Logic controllers are used to sequence mechanical operations in many applications. Examples include elevators, washing machines and other systems with interrelated operations. An automatic sequential control system may trigger a series of mechanical actuators in the correct sequence to perform a task. For example, various electric and pneumatic transducers may fold and glue a cardboard box, fill it with the product and then seal it in an automatic packaging machine.

PLC software can be written in many different ways – ladder diagrams, SFC (sequential function charts) or statement lists.[3]

On–off control

On–off control uses a feedback controller that switches abruptly between two states. A simple bi-metallic domestic thermostat can be described as an on-off controller. When the temperature in the room (PV) goes below the user setting (SP), the heater is switched on. Another example is a pressure switch on an air compressor. When the pressure (PV) drops below the setpoint (SP) the compressor is powered. Refrigerators and vacuum pumps contain similar mechanisms. Simple on–off control systems like these can be cheap and effective.

Linear control

Linear control are control systems and control theory based on negative feedback for producing a control signal to maintain the controlled process variable (PV) at the desired setpoint (SP). There are several types of linear control systems with different capabilities.

Fuzzy logic

Fuzzy logic is an attempt to apply the easy design of logic controllers to the control of complex continuously varying systems. Basically, a measurement in a fuzzy logic system can be partly true.

The rules of the system are written in natural language and translated into fuzzy logic. For example, the design for a furnace would start with: "If the temperature is too high, reduce the fuel to the furnace. If the temperature is too low, increase the fuel to the furnace."

Measurements from the real world (such as the temperature of a furnace) are fuzzified and logic is calculated arithmetic, as opposed to Boolean logic, and the outputs are de-fuzzified to control equipment.

When a robust fuzzy design is reduced to a single, quick calculation, it begins to resemble a conventional feedback loop solution and it might appear that the fuzzy design was unnecessary. However, the fuzzy logic paradigm may provide scalability for large control systems where conventional methods become unwieldy or costly to derive.[citation needed]

Fuzzy electronics is an electronic technology that uses fuzzy logic instead of the two-value logic more commonly used in digital electronics.

Physical implementation

A DCS control room where large screens display plant information. The operators can view and control any part of the process from their computer screens, whilst retaining a plant overview on the larger screens.
A control panel of a hydraulic heat press machine

The range of control system implementation is from compact controllers often with dedicated software for a particular machine or device, to distributed control systems for industrial process control for a large physical plant.

Logic systems and feedback controllers are usually implemented with programmable logic controllers.

See also

References

  1. ^ "Feedback and control systems" - JJ Di Steffano, AR Stubberud, IJ Williams. Schaums outline series, McGraw-Hill 1967
  2. ^ Kuphaldt, Tony R. "Chapter 6 LADDER LOGIC". Lessons In Electric Circuits -- Volume IV. Archived from the original on 12 September 2010. Retrieved 22 September 2010.
  3. ^ Brady, Ian. "Programmable logic controllers - benefits and applications" (PDF). PLCs. Archived (PDF) from the original on 2 February 2014. Retrieved 5 December 2011.