Utility representation theorem
In economics, a preference representation theorem is a theorem asserting that, under certain conditions, a preference ordering can be represented by a real-valued utility function, such that option A is preferred to option B if and only if the utility of A is larger than that of B.
Background
Suppose a person is asked questions of the form "Do you prefer A or B?" (when A and B can be options, actions to take, states of the world, consumption bundles, etc.). If the agent prefers A to B, we write . The set of all such preference-pairs forms the person's preference relation.
Instead of recording the person's preferences between every pair of options, it would be much more convenient to have a single utility function - a function u that assigns a real number to each option, such that if and only if .
Not every preference-relation has a utility-function representation. For example, if the relation is not transitive (the agent prefers A to B, B to C, and C to A), then it has no utility representation, since any such utility function would have to satisfy , which is impossible.
A utility representation theorem gives conditions on a preference relation, that are sufficient for the existence of a utility representation.
Complete preference relations
Incomplete preferences
Debreu's theorems were later extended to preference relations that are not complete. In particular:
References
- ^ Richter, Marcel K. (1966). "Revealed Preference Theory". Econometrica. 34 (3): 635–645. doi:10.2307/1909773. ISSN 0012-9682.
- ^ Peleg, Bezalel (1970). "Utility Functions for Partially Ordered Topological Spaces". Econometrica. 38 (1): 93–96. doi:10.2307/1909243. ISSN 0012-9682.
- ^ Ok, Efe (2002). "Utility Representation of an Incomplete Preference Relation". Journal of Economic Theory. 104 (2): 429–449. ISSN 0022-0531.
- ^ Evren, Özgür; Ok, Efe A. (2011-08-01). "On the multi-utility representation of preference relations". Journal of Mathematical Economics. 47 (4): 554–563. doi:10.1016/j.jmateco.2011.07.003. ISSN 0304-4068.