Jump to content

Sublinear function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Mgkrupa (talk | contribs) at 17:05, 13 February 2023 (Properties). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In linear algebra, a sublinear function (or functional as is more often used in functional analysis), also called a quasi-seminorm or a Banach functional, on a vector space is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm except that it is not required to map non-zero vectors to non-zero values.

In functional analysis the name Banach functional is sometimes used, reflecting that they are most commonly used when applying a general formulation of the Hahn–Banach theorem. The notion of a sublinear function was introduced by Stefan Banach when he proved his version of the Hahn-Banach theorem.[1]

There is also a different notion in computer science, described below, that also goes by the name "sublinear function."

Definitions

Let be a vector space over a field where is either the real numbers or complex numbers A real-valued function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p : X \to \Reals} on is called a sublinear function (or a sublinear functional if ), and also sometimes called a quasi-seminorm or a Banach functional, if it has these two properties:[1]

  1. Positive homogeneity/Nonnegative homogeneity:[2] Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(r x) = r p(x)} for all real and all
    • This condition holds if and only if for all positive real and all
  2. Subadditivity/Triangle inequality:[2] for all
    • This subadditivity condition requires to be real-valued.

A function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p : X \to \Reals} is called positive[3] or nonnegative if for all It is a symmetric function if for all Every subadditive symmetric function is necessarily nonnegative.[proof 1] A sublinear function on a real vector space is symmetric if and only if it is a seminorm. A sublinear function on a real or complex vector space is a seminorm if and only if it is a balanced function or equivalently, if and only if for every unit length scalar (satisfying ) and every

The set of all sublinear functions on denoted by can be partially ordered by declaring if and only if for all A sublinear function is called minimal if it is a minimal element of under this order. A sublinear function is minimal if and only if it is a real linear functional.[1]

Examples and sufficient conditions

Every norm, seminorm, and real linear functional is a sublinear function. The identity function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \Reals \to \Reals} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle X := \Reals} is an example of a sublinear function (in fact, it is even a linear functional) that is neither positive nor a seminorm; the same is true of this map's negation [4] More generally, for any real the map is a sublinear function on and moreover, every sublinear function is of this form; specifically, if and then and

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle q} are sublinear functions on a real vector space then so is the map More generally, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \mathcal{P}} is any non-empty collection of sublinear functionals on a real vector space and if for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle q(x) := \sup \{p(x) : p \in \mathcal{P}\},} then is a sublinear functional on [4]

A function is sublinear if and only if it is subadditive, convex, and satisfies

Properties

Every sublinear function is a convex function: For

If is a sublinear function on a vector space then[proof 2][3] Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(0) ~=~ 0 ~\leq~ p(x) + p(-x),} for every which implies that at least one of and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(-x)} must be nonnegative; that is, for every [3] Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle 0 ~\leq~ \max \{p(x), p(-x)\}.} Moreover, when is a sublinear function on a real vector space then the map defined by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle q(x) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \max \{p(x), p(-x)\}} is a seminorm.[3]

Subadditivity of guarantees that for all vectors [1][proof 3] so if is also symmetric then the reverse triangle inequality will hold for all vectors

Defining then subadditivity also guarantees that for all the value of on the set is constant and equal to [proof 4] In particular, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \ker p = p^{-1}(0)} is a vector subspace of then and the assignment which will be denoted by is a well-defined real-valued sublinear function on the quotient space that satisfies If is a seminorm then is just the usual canonical norm on the quotient space

Pryce's sublinearity lemma[2]Suppose is a sublinear functional on a vector space and that is a non-empty convex subset. If is a vector and are positive real numbers such that then for every positive real there exists some such that

Adding to both sides of the hypothesis (where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(x + a K) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{p(x + a k) : k \in K\}} ) and combining that with the conclusion gives which yields many more inequalities, including, for instance, in which an expression on one side of a strict inequality can be obtained from the other by replacing the symbol with (or vice versa) and moving the closing parenthesis to the right (or left) of an adjacent summand (all other symbols remain fixed and unchanged).

Associated seminorm

If is a real-valued sublinear function on a real vector space (or if is complex, then when it is considered as a real vector space) then the map defines a seminorm on the real vector space called the seminorm associated with [3] A sublinear function on a real or complex vector space is a symmetric function if and only if where as before.

More generally, if is a real-valued sublinear function on a (real or complex) vector space then will define a seminorm on if this supremum is always a real number (that is, never equal to ).

Relation to linear functionals

If is a sublinear function on a real vector space then the following are equivalent:[1]

  1. is a linear functional.
  2. for every
  3. for every
  4. is a minimal sublinear function.

If is a sublinear function on a real vector space then there exists a linear functional on such that [1]

If is a real vector space, is a linear functional on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle X,} and is a positive sublinear function on then on if and only if [1]

Dominating a linear functional

A real-valued function defined on a subset of a real or complex vector space is said to be dominated by a sublinear function if for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle x} that belongs to the domain of If is a real linear functional on then[5][1] is dominated by (that is, ) if and only if Moreover, if is a seminorm or some other symmetric map (which by definition means that holds for all ) then if and only if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle |f| \leq p.}

Theorem[1]If be a sublinear function on a real vector space and if then there exists a linear functional on that is dominated by (that is, ) and satisfies Moreover, if is a topological vector space and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p} is continuous at the origin then is continuous.

Continuity

Theorem[6]Suppose is a subadditive function (that is, for all ). Then is continuous at the origin if and only if is uniformly continuous on If satisfies then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle f} is continuous if and only if its absolute value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle |f| : X \to [0, \infty)} is continuous. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle f} is non-negative then is continuous if and only if is open in

Suppose is a topological vector space (TVS) over the real or complex numbers and is a sublinear function on Then the following are equivalent:[6]

  1. is continuous;
  2. is continuous at 0;
  3. is uniformly continuous on ;

and if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p} is positive then this list may be extended to include:

  1. is open in

If is a real TVS, is a linear functional on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle X,} and is a continuous sublinear function on then on implies that is continuous.[6]

Relation to Minkowski functions and open convex sets

Theorem[6]If is a convex open neighborhood of the origin in a topological vector space then the Minkowski functional of is a continuous non-negative sublinear function on such that if in addition is a balanced set then is a seminorm on

Relation to open convex sets

Theorem[6]Suppose that is a topological vector space (not necessarily locally convex or Hausdorff) over the real or complex numbers. Then the open convex subsets of are exactly those that are of the form for some and some positive continuous sublinear function on

Proof

Let be an open convex subset of If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle 0 \in V} then let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle z := 0} and otherwise let be arbitrary. Let be the Minkowski functional of which is a continuous sublinear function on since is convex, absorbing, and open ( however is not necessarily a seminorm since was not assumed to be balanced). From it follows that It will be shown that which will complete the proof. One of the known properties of Minkowski functionals guarantees where since is convex and contains the origin. Thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle V - z = \{x \in X : p(x) < 1\},} as desired.

Operators

The concept can be extended to operators that are homogeneous and subadditive. This requires only that the codomain be, say, an ordered vector space to make sense of the conditions.

Computer science definition

In computer science, a function is called sublinear if or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle f(n) \in o(n)} in asymptotic notation (notice the small Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle o} ). Formally, if and only if, for any given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle c > 0,} there exists an such that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle n \geq N.} [7] That is, grows slower than any linear function. The two meanings should not be confused: while a Banach functional is convex, almost the opposite is true for functions of sublinear growth: every function can be upper-bounded by a concave function of sublinear growth.[8]

See also

Notes

  1. ^ Let The triangle inequality and symmetry imply Substituting for and then subtracting from both sides proves that Thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle 0 \leq p(0) \leq 2 p(x)} which implies
  2. ^ If and then nonnegative homogeneity implies that Consequently, which is only possible if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \blacksquare}
  3. ^ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(x) = p(y + (x - y)) \leq p(y) + p(x - y),} which happens if and only if Substituting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle y := -x} and gives Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(x) - p(-x) \leq p(x - (-x)) = p(x + x) \leq p(x) + p(x),} which implies (positive homogeneity is not needed; the triangle inequality suffices).
  4. ^ Let and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle k \in p^{-1}(0) \cap (-p^{-1}(0)).} It remains to show that The triangle inequality implies Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(-k) = 0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p(x) = p(x) - p(-k) \leq p(x - (-k)) = p(x + k),} as desired.

References

  1. ^ a b c d e f g h i Narici & Beckenstein 2011, pp. 177–220.
  2. ^ a b c Schechter 1996, pp. 313–315.
  3. ^ a b c d e Narici & Beckenstein 2011, pp. 120–121.
  4. ^ a b Narici & Beckenstein 2011, pp. 177–221.
  5. ^ Rudin 1991, pp. 56–62.
  6. ^ a b c d e Narici & Beckenstein 2011, pp. 192–193.
  7. ^ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001) [1990]. "3.1". Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. pp. 47–48. ISBN 0-262-03293-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. ^ Ceccherini-Silberstein, Tullio; Salvatori, Maura; Sava-Huss, Ecaterina (2017-06-29). Groups, graphs, and random walks. Cambridge. Lemma 5.17. ISBN 9781316604403. OCLC 948670194.{{cite book}}: CS1 maint: location missing publisher (link)

Bibliography