Jump to content

Synchronous Data Flow

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Citation bot (talk | contribs) at 03:22, 12 February 2023 (Alter: url. URLs might have been anonymized. Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 3219/3500). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Synchronous Data Flow (SDF) is a restriction on Kahn process networks where the number of tokens read and written by each process is known ahead of time. In some cases, processes can be scheduled such that channels have bounded FIFOs.[1]

Limitations

SDF does not account for asynchronous processes as their token read/write rates will vary. Practically, one can divide the network into synchronous sub-networks connected by asynchronous links. Alternatively a runtime supervisor can enforce fairness and other desired properties.[1]

Applications

SDF is useful for modeling digital signal processing (DSP) routines. Models can be compiled to target parallel hardware like FPGAs, processors with DSP instruction sets like Qualcomm's Hexagon, and other systems.

See also

References

  1. ^ a b Lee, Edward Ashford; Messerschmitt, David G. (January 1987). "Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing". IEEE Transactions on Computers. C-36 (1): 24–35. doi:10.1109/TC.1987.5009446. ISSN 0018-9340. S2CID 9981963.