Lexicographic optimization
Lexicographic optimization is a kind of Multi-objective optimization. Multi-objective optimization deals with optimization problems with two or more objective functions to be optimized simultaneously. Often, the different objectives can be ranked in order of importance to the decision-maker, so that objective is the most important, objective is the next most important, and so on. Lexicographic optimization presumes that the decision-maker prefers even a very small increase in , to even a very large increase in etc. Similarly, the decision-maker prefers even a very small increase in , to even a very large increase in etc. In other words, the decision-maker ranks the possible solutions according to a lexicographic order.[1]
![]() | This article or section is in a state of significant expansion or restructuring. You are welcome to assist in its construction by editing it as well. This template was placed by Erel Segal (talk · contribs). If this article or section has not been edited in several days, please remove this template. If you are the editor who added this template and you are actively editing, please be sure to replace this template with {{in use}} during the active editing session. Click on the link for template parameters to use.
This article was last edited by Erel Segal (talk | contribs) 2 years ago. (Update timer) |
Algorithms
One algorithm for lexicographic optimization consists of solving a sequence of single-objective optimization problems of the form
where is the optimal value of the above problem with . Thus, and each new problem of the form in the above problem in the sequence adds one new constraint as goes from to .
See also
References
- ^ Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D. (2018-02-01). "Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm". Applied Mathematics and Computation. Recent Trends in Numerical Computations: Theory and Algorithms. 318: 298–311. doi:10.1016/j.amc.2017.05.058. ISSN 0096-3003.