Jump to content

Titanium(II) oxide

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Siramonas (talk | contribs) at 13:57, 27 December 2022 (Extended the article and added a few supporting references.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Titanium(II) oxide
Titanium(II) oxide
Titanium(II) oxide
Names
IUPAC name
Titanium(II) oxide
Other names
Titanium monoxide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.032.020 Edit this at Wikidata
  • InChI=1S/O.Ti
  • O=[Ti]
Properties
TiO
Molar mass 63.866 g/mol
Appearance bronze crystals
Density 4.95 g/cm3
Melting point 1,750 °C (3,180 °F; 2,020 K)
Structure
cubic
Hazards
Flash point Non-flammable
Related compounds
Titanium(III) oxide
Titanium(III,IV) oxide
Titanium(IV) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Titanium(II) oxide (TiO) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C.[1] Annealing under high temperatures makes it hard to control the material's morphology, so hydrothermal synthesis with vacuum annealing is required to prepare titanium monoxide nanostructures.[2] It is non-stoichiometric in a range TiO0.7 to TiO1.3 and this is caused by vacancies of either Ti or O in the defect rock salt structure.[1] In pure TiO 15% of both Ti and O sites are vacant,[1] as the vacancies allow metal-metal bonding between adjacent Ti centres. Careful annealing can cause ordering of the vacancies producing a monoclinic form which has 5 TiO units in the primitive cell that exhibits lower resistivity.[3] A high temperature form with titanium atoms with trigonal prismatic coordination is also known.[4] Acid solutions of TiO are stable for a short time then decompose to give hydrogen:[1]

2 Ti2+(aq) + 2 H+(aq) → 2 Ti3+(aq) + H2(g)

Gas-phase TiO shows strong bands in the optical spectra of cool (M-type) stars.[5][6] In 2017, TiO was claimed to be detected in an exoplanet atmosphere for the first time; a result which is still debated in the literature.[7][8] Additionally, evidence has been obtained for the presence of the diatomic molecule TiO in the interstellar medium.[9]

Pure TiO possesses unique optical properties, such as extremely low for titanium oxide band gaps.[2] In addition, the titanium suboxides which are similar to the TiO structure, are applicable in the design of gas sensors to detect volatile organic compounds under a low concentration.[10][11]

References

  1. ^ a b c d Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
  2. ^ a b Jagminas, Arūnas; Ramanavičius, Simonas; Jasulaitiene, Vitalija; Šimėnas, Mantas (2019). "Hydrothermal synthesis and characterization of nanostructured titanium monoxide films". RSC Advances. 9 (69): 40727–40735. doi:10.1039/C9RA08463K. ISSN 2046-2069. PMC 9076268. PMID 35542679.{{cite journal}}: CS1 maint: PMC format (link)
  3. ^ Banus, M. D.; Reed, T. B.; Strauss, A. J. (1972-04-15). "Electrical and Magnetic Properties of TiO and VO". Physical Review B. 5 (8). American Physical Society (APS): 2775–2784. Bibcode:1972PhRvB...5.2775B. doi:10.1103/physrevb.5.2775. ISSN 0556-2805.
  4. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  5. ^ Jorgensen, Uffe G. (April 1994). "Effects of TiO in stellar atmospheres". Astronomy and Astrophysics. 284 (1): 179–186. Bibcode:1994A&A...284..179J.
  6. ^ "Spectral classification of late-type dwarfs".
  7. ^ Sedaghati, Elyar; Boffin, Henri M.J.; MacDonald, Ryan J.; Gandhi, Siddharth; Madhusudhan, Nikku; Gibson, Neale P.; Oshagh, Mahmoudreza; Claret, Antonio; Rauer, Heike (14 September 2017). "Detection of titanium oxide in the atmosphere of a hot Jupiter". Nature. 549 (7671): 238–241. arXiv:1709.04118. Bibcode:2017Natur.549..238S. doi:10.1038/nature23651. PMID 28905896. S2CID 205259502.
  8. ^ Espinoza, Nestor; et al. (January 2019). "ACCESS: A featureless optical transmission spectrum for WASP-19b from Magellan/IMACS". MNRAS. 482 (2): 2065–2087. arXiv:1807.10652. Bibcode:2019MNRAS.482.2065E. doi:10.1093/mnras/sty2691.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Dyck, H. M.; Nordgren, Tyler E. (2002). "The Effect of TiO Absorption on Optical and Infrared Angular Diameters of Cool Stars". The Astronomical Journal. 124 (1). American Astronomical Society: 541–545. Bibcode:2002AJ....124..541D. doi:10.1086/341039. ISSN 0004-6256.
  10. ^ Ramanavicius, Simonas; Ramanavicius, Arunas (2020-01). "Insights in the Application of Stoichiometric and Non-Stoichiometric Titanium Oxides for the Design of Sensors for the Determination of Gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2)". Sensors. 20 (23): 6833. doi:10.3390/s20236833. ISSN 1424-8220. PMC 7730008. PMID 33260465. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  11. ^ Ramanavicius, Simonas; Tereshchenko, Alla; Karpicz, Renata; Ratautaite, Vilma; Bubniene, Urte; Maneikis, Audrius; Jagminas, Arunas; Ramanavicius, Arunas (2020-01). "TiO2-x/TiO2-Structure Based 'Self-Heated' Sensor for the Determination of Some Reducing Gases". Sensors. 20 (1): 74. doi:10.3390/s20010074. ISSN 1424-8220. PMC 6982824. PMID 31877794. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)