Titanium(II) oxide
![]() | |
Names | |
---|---|
IUPAC name
Titanium(II) oxide
| |
Other names
Titanium monoxide
| |
Identifiers | |
3D model (JSmol)
|
|
ECHA InfoCard | 100.032.020 |
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
TiO | |
Molar mass | 63.866 g/mol |
Appearance | bronze crystals |
Density | 4.95 g/cm3 |
Melting point | 1,750 °C (3,180 °F; 2,020 K) |
Structure | |
cubic | |
Hazards | |
Flash point | Non-flammable |
Related compounds | |
Titanium(III) oxide Titanium(III,IV) oxide Titanium(IV) oxide | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Titanium(II) oxide (TiO) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C.[1] Annealing under high temperatures makes it hard to control the material's morphology, so hydrothermal synthesis with vacuum annealing is required to prepare titanium monoxide nanostructures.[2] It is non-stoichiometric in a range TiO0.7 to TiO1.3 and this is caused by vacancies of either Ti or O in the defect rock salt structure.[1] In pure TiO 15% of both Ti and O sites are vacant,[1] as the vacancies allow metal-metal bonding between adjacent Ti centres. Careful annealing can cause ordering of the vacancies producing a monoclinic form which has 5 TiO units in the primitive cell that exhibits lower resistivity.[3] A high temperature form with titanium atoms with trigonal prismatic coordination is also known.[4] Acid solutions of TiO are stable for a short time then decompose to give hydrogen:[1]
- 2 Ti2+(aq) + 2 H+(aq) → 2 Ti3+(aq) + H2(g)
Gas-phase TiO shows strong bands in the optical spectra of cool (M-type) stars.[5][6] In 2017, TiO was claimed to be detected in an exoplanet atmosphere for the first time; a result which is still debated in the literature.[7][8] Additionally, evidence has been obtained for the presence of the diatomic molecule TiO in the interstellar medium.[9]
Pure TiO possesses unique optical properties, such as extremely low for titanium oxide band gaps.[2] In addition, the titanium suboxides which are similar to the TiO structure, are applicable in the design of gas sensors to detect volatile organic compounds under a low concentration.[10][11]
References
- ^ a b c d Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
- ^ a b Jagminas, Arūnas; Ramanavičius, Simonas; Jasulaitiene, Vitalija; Šimėnas, Mantas (2019). "Hydrothermal synthesis and characterization of nanostructured titanium monoxide films". RSC Advances. 9 (69): 40727–40735. doi:10.1039/C9RA08463K. ISSN 2046-2069. PMC 9076268. PMID 35542679.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ Banus, M. D.; Reed, T. B.; Strauss, A. J. (1972-04-15). "Electrical and Magnetic Properties of TiO and VO". Physical Review B. 5 (8). American Physical Society (APS): 2775–2784. Bibcode:1972PhRvB...5.2775B. doi:10.1103/physrevb.5.2775. ISSN 0556-2805.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- ^ Jorgensen, Uffe G. (April 1994). "Effects of TiO in stellar atmospheres". Astronomy and Astrophysics. 284 (1): 179–186. Bibcode:1994A&A...284..179J.
- ^ "Spectral classification of late-type dwarfs".
- ^ Sedaghati, Elyar; Boffin, Henri M.J.; MacDonald, Ryan J.; Gandhi, Siddharth; Madhusudhan, Nikku; Gibson, Neale P.; Oshagh, Mahmoudreza; Claret, Antonio; Rauer, Heike (14 September 2017). "Detection of titanium oxide in the atmosphere of a hot Jupiter". Nature. 549 (7671): 238–241. arXiv:1709.04118. Bibcode:2017Natur.549..238S. doi:10.1038/nature23651. PMID 28905896. S2CID 205259502.
- ^ Espinoza, Nestor; et al. (January 2019). "ACCESS: A featureless optical transmission spectrum for WASP-19b from Magellan/IMACS". MNRAS. 482 (2): 2065–2087. arXiv:1807.10652. Bibcode:2019MNRAS.482.2065E. doi:10.1093/mnras/sty2691.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Dyck, H. M.; Nordgren, Tyler E. (2002). "The Effect of TiO Absorption on Optical and Infrared Angular Diameters of Cool Stars". The Astronomical Journal. 124 (1). American Astronomical Society: 541–545. Bibcode:2002AJ....124..541D. doi:10.1086/341039. ISSN 0004-6256.
- ^ Ramanavicius, Simonas; Ramanavicius, Arunas (2020-01). "Insights in the Application of Stoichiometric and Non-Stoichiometric Titanium Oxides for the Design of Sensors for the Determination of Gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2)". Sensors. 20 (23): 6833. doi:10.3390/s20236833. ISSN 1424-8220. PMC 7730008. PMID 33260465.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link) - ^ Ramanavicius, Simonas; Tereshchenko, Alla; Karpicz, Renata; Ratautaite, Vilma; Bubniene, Urte; Maneikis, Audrius; Jagminas, Arunas; Ramanavicius, Arunas (2020-01). "TiO2-x/TiO2-Structure Based 'Self-Heated' Sensor for the Determination of Some Reducing Gases". Sensors. 20 (1): 74. doi:10.3390/s20010074. ISSN 1424-8220. PMC 6982824. PMID 31877794.
{{cite journal}}
: Check date values in:|date=
(help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)