Template:Analogous fixed-point theorems
Appearance
There are several fixed-point theorems which come in three equivalent variants: an algebraic topology variant, a combinatorial variant and a set-covering variant. Each variant can be proved separately using totally different arguments, but each variant can also be reduced to the other variants in its row. Additionally, each result in the top row can be deduced from the one below it in the same column.[1]
Algebraic topology | Combinatorics | Set covering |
---|---|---|
Brouwer fixed-point theorem | Sperner's lemma | Knaster–Kuratowski–Mazurkiewicz lemma |
Borsuk–Ulam theorem | Tucker's lemma | Lusternik–Schnirelmann theorem |

![]() | This template's documentation is missing, inadequate, or does not accurately describe its functionality or the parameters in its code. Please help to expand and improve it. |
![]() | This template has not been added to any categories. Please help out by adding categories to it so that it can be listed with similar templates. |
- ^ Nyman, Kathryn L.; Su, Francis Edward (2013), "A Borsuk–Ulam equivalent that directly implies Sperner's lemma", The American Mathematical Monthly, 120 (4): 346–354, doi:10.4169/amer.math.monthly.120.04.346, JSTOR 10.4169/amer.math.monthly.120.04.346, MR 3035127