Congruence lattice problem
Appearance
This will take some time...
References
- G.M. Bergman, Von Neumann regular rings with tailor-made ideal lattices, Unpublished note (26 October 1986).
- G. Birkhoff and O. Frink, Representations of lattices by sets, Trans. Amer. Math. Soc. 64, no. 2 (1948), 299--316.
- S. Bulman-Fleming and K. McDowell, Flat semilattices, Proc. Amer. Math. Soc. 72, no. 2 (1978), 228--232.
- K.P. Bogart, R. Freese, and J.P.S. Kung (editors), The Dilworth Theorems. Selected papers of Robert P. Dilworth, Birkhäuser Verlag, Basel - Boston - Berlin, 1990. xxvi+465 p.
- H. Dobbertin, Refinement monoids, Vaught monoids, and Boolean algebras, Math. Ann. 265, no. 4 (1983), 473--487.
- H. Dobbertin, Vaught measures and their applications in lattice theory, J. Pure Appl. Algebra 43, no. 1 (1986), 27--51.
- E.G. Effros, D.E. Handelman and C.-L. Shen, Dimension groups and their affine representations, Amer. J. Math. 102, no. 2 (1980), 385--407.
- G.A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38, no. 1 (1976), 29--44.
- Ershov, Ju.L., Theory of Numerations (Russian), Monographs in Mathematical Logic and Foundations of Mathematics, ``Nauka, Moscow, 1977. 416 p.
- R. Freese, W.A. Lampe, and W. Taylor, Congruence lattices of algebras of fixed similarity type. I, Pacific J. Math. 82 (1979), 59--68.
- N. Funayama and T. Nakayama, On the distributivity of a lattice of lattice congruences, Proc. Imp. Acad. Tokyo 18 (1942), 553--554.
- K.R. Goodearl, ``von Neumann regular rings. Second edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. xviii+412 p.
- K.R. Goodearl and D. Handelman, Simple self-injective rings, Comm. Algebra 3, no. 9 (1975), 797--834.
- K.R. Goodearl and D. Handelman, Tensor products of dimension groups and $K_0$ of unit-regular rings, Canad. J. Math. 38, no. 3 (1986), 633--658.
- K.R. Goodearl and F. Wehrung, Representations of distributive semilattices in ideal lattices of various algebraic structures, Algebra Universalis 45, no. 1 (2001), 71--102.
- G. Grätzer, General Lattice Theory. Second edition, new appendices by the author with B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A. Priestley, H. Rose, E.T. Schmidt, S.E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998. xx+663 p.
- G. Grätzer, The Congruences of a Finite Lattice: a Proof-by-Picture Approach, Birkhäuser Boston, 2005. xxiii+281 p.
- G. Grätzer, H. Lakser, and F. Wehrung, Congruence amalgamation of lattices, Acta Sci. Math. (Szeged) 66 (2000), 339--358.
- G. Grätzer and E.T. Schmidt, On congruence lattices of lattices, Acta Math. Sci. Hungar. 13 (1962), 179--185.
- G. Grätzer and E.T. Schmidt, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. (Szeged) 24 (1963), 34--59.
- G. Grätzer and E.T. Schmidt, Finite lattices and congruences. A survey, Algebra Universalis 52, no. 2-3 (2004), 241--278.
- P.A. Grillet, Directed colimits of free commutative semigroups, J. Pure Appl. Algebra 9, no. 1 (1976), 73--87.
- A.P. Huhn, On the representation of algebraic distributive lattices II, Acta Sci. Math. (Szeged) 53 (1989), 3--10.
- A.P. Huhn, On the representation of algebraic distributive lattices III, Acta Sci. Math. (Szeged) 53 (1989), 11--18.
- K.A. Kearnes and A. Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8, no. 4 (1998), 497--531.
- C. Kuratowski, Sur une caract\'erisation des alephs, Fund. Math. 38 (1951), 14--17.
- W.A. Lampe, Congruence lattices of algebras of fixed similarity type. II, Pacific J. Math. 103 (1982), 475--508.
- J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22(12) (December 1936), 707–713.
- M. Ploščica and J. Tůma, Uniform refinements in distributive semilattices, Contributions to General Algebra 10, Proceedings of the
Klagenfurt Conference, May 29 -- June 1, 1997. Verlag Johannes Heyn, Klagenfurt 1998.
- M. Ploščica, J. Tůma, and F. Wehrung, Congruence lattices of free lattices in nondistributive varieties, Colloq. Math. 76, no. 2 (1998), 269--278.
- P. Pudlák, On congruence lattices of lattices, Algebra Universalis 20 (1985), 96--114.
- P. Růžička, Lattices of two-sided ideals of locally matricial algebras and the $\Gamma$-invariant problem, Israel J. Math. 142
(2004), 1--28.
- P. Růžička, Liftings of distributive lattices by locally matricial algebras with respect to the Idc functor, Algebra Universalis 55, no. 2-3 (August 2006), 239--257.
- P. Růžička, Free trees and the optimal bound in Wehrung's theorem, preprint 2006.
- P. Růžička, J. Tůma, and F. Wehrung, Distributive congruence lattices of congruence-permutable algebras, J. Algebra, to appear.
- E.T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Casopis Sloven. Akad. Vied 18(1968), 3--20.
- E.T. Schmidt, The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice}, Acta Sci. Math. (Szeged) 43 (1981), p. 153--168.
- E.T. Schmidt, 'A Survey on Congruence Lattice Representations, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 42. BSB B. G. Teubner
Verlagsgesellschaft, Leipzig, 1982. 115 p.
- R.T. Shannon, Lazard's theorem in algebraic categories, Algebra Universalis 4 (1974), 226--228.
- A. Tarski, ``Cardinal Algebras. With an Appendix: Cardinal Products of Isomorphism Types, by Bjarni Jónsson and Alfred Tarski. Oxford University Press, New York, N. Y., 1949. xii+326 p.
- J. Tůma, On the existence of simultaneous representations, Acta Sci. Math. (Szeged) 64 (1998), 357--371.
- J. Tůma and F. Wehrung, Simultaneous representations of semilattices by lattices with permutable congruences, Internat. J. Algebra Comput. 11, no. 2 (2001), 217--246.
- J. Tůma and F. Wehrung, A survey of recent results on congruence lattices of lattices, Algebra Universalis 48, no. 4 (2002), 439--471.
- J. Tůma and F. Wehrung, Congruence lifting of diagrams of finite Boolean semilattices requires large congruence varieties, Internat. J. Algebra Comput. 16, no. 3 (2006), 541--550.
- F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177--206.
- F. Wehrung, The dimension monoid of a lattice, Algebra Universalis 40, no. 3 (1998), 247--411.
- F. Wehrung, A uniform refinement property for congruence lattices, Proc. Amer. Math. Soc. 127, no. 2 (1999), 363--370.
- F. Wehrung, Representation of algebraic distributive lattices with &alefsym1 compact elements as ideal lattices of regular rings, Publ. Mat. (Barcelona) 44 (2000), 419--435.
- F. Wehrung, Forcing extensions of partial lattices, J. Algebra 262, no. 1 (2003), 127--193.
- F. Wehrung, Semilattices of finitely generated ideals of exchange rings with finite stable rank, Trans. Amer. Math. Soc. 356, no. 5 (2004), 1957--1970.
- F. Wehrung, A solution to Dilworth's congruence lattice problem, preprint 2006.