Linear function
When the function is of only one variable, it is of the form
where a and b are constants, often real numbers. The graph of such a function of one variable is a nonvertical line. a is frequently referred to as the slope of the line, and b as the intercept.
If a > 0 then the gradient is positive and the graph slopes upwards.
If a < 0 then the gradient is negative and the graph slopes downwards.
For a function of any finite number of variables, the general formula is
and the graph is a hyperplane of dimension k.
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line.
In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form. In the context of linear algebra, the polynomial functions of degree 0 or 1 are the scalar-valued affine maps.
As a linear map

In linear algebra, a linear function is a map f between two vector spaces s.t.
Here a denotes a constant belonging to some field K of scalars (for example, the real numbers) and x and y are elements of a vector space, which might be K itself.
In other terms the linear function preserves vector addition and scalar multiplication.
Some authors use "linear function" only for linear maps that take values in the scalar field;[1] these are more commonly called linear forms.
The "linear functions" of calculus qualify as "linear maps" when (and only when) f(0, ..., 0) = 0, or, equivalently, when the above constant b equals zero. Geometrically, the graph of the function must pass through the origin.
See also
- Homogeneous function
- Nonlinear system
- Piecewise linear function
- Linear approximation
- Linear interpolation
- Discontinuous linear map
- Linear least squares
Notes
- ^ Gelfand 1961
References
- Izrail Moiseevich Gelfand (1961), Lectures on Linear Algebra, Interscience Publishers, Inc., New York. Reprinted by Dover, 1989. ISBN 0-486-66082-6
- Thomas S. Shores (2007), Applied Linear Algebra and Matrix Analysis, Undergraduate Texts in Mathematics, Springer. ISBN 0-387-33195-6
- James Stewart (2012), Calculus: Early Transcendentals, edition 7E, Brooks/Cole. ISBN 978-0-538-49790-9
- Leonid N. Vaserstein (2006), "Linear Programming", in Leslie Hogben, ed., Handbook of Linear Algebra, Discrete Mathematics and Its Applications, Chapman and Hall/CRC, chap. 50. ISBN 1-584-88510-6